Stochastic Calculus, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2015/index.html Always check the class message board before doing any work on the assignment.

Assignment 4, due October 26

Corrections (check the class message board): (none yet.)

1. For Brownian motion, the distribution of X_{t_s} conditional on \mathcal{F}_t is $\mathcal{N}(X_t, s-t)$. From this it is possible to show that if $X_t \sim u(x, t)$, then u satisfies the heat equation. The *Ornstein Uhlenbeck* process is defined as the limit as $\delta \to 0$ (in the sense of weak convergence of distributions) of the approximations

$$X_{t_{k+1}}^{(\delta)} = (1-\delta)X_{t_k}^{(\delta)} + \sqrt{\delta}Y_k$$

Here, as before, $t_k = k\delta$ and the Y_k are iid $\mathcal{N}(0, 1)$.

- (a) Suppose that $X_0^{(\delta)} = 0$ and show that $X_{t_k}^{(\delta)}$ is Gaussian.
- (b) Assume that $X_t^{(\delta)} \stackrel{d}{\rightharpoonup} X_t$. Show that the distribution of X_{t_s} conditional on \mathcal{F}_t is $\mathcal{N}(e^{-t}X_t, \sigma^2(s-t))$. Find the formula for $\sigma^2(s-t)$
- (c) Use this to write a formula of the form

$$X_s = e^{-(s-t)}X_t + \text{ independent Gaussian }.$$

- (d) Use that to discover the PDE that the PDF of X_t satisfies. It has $\frac{1}{2}\partial_x^2 u$ and another term.
- 2. (computing) Write Brownian motion simulations in R to verify the two formulas we did in class for Brownian motion hitting and survival. Suppose X_t is a standard Brownian motion with $X_0 = 0$ and $\tau_a = \min\{t|X_t = a\}$. The PDF of τ is

$$f(t) = \frac{1}{\sqrt{2\pi t^3}} e^{-\frac{a^2}{2t}} \,.$$

The PDF of surviving particles (those with $\tau_a > t$) is

$$u_a(x,t) = \frac{1}{\sqrt{2\pi t}} \left(e^{-\frac{x^2}{2t}} - e^{-\frac{(2a-x)^2}{2t}} \right)$$

Do simulations to make a large number of sample paths and make histograms of the hitting times and of the density of surviving particles and plot them against the theoretical values. To simulate a Brownian motion path, choose a small δ and use the scaling formula

$$X^{(\delta)}_t = \sqrt{\delta} \sum_{k\delta < t} Y_k \; .$$

In practice, you can just get values at the times $t_k = k\delta$. Assuming a < 0, the simulated hitting time can be

$$\tau_a^{(\delta)} = \min\left\{t_k | X_{t_k}^{(\delta)} < a\right\} \;.$$

It should not matter what the distribution of the Y_k is, but an easy one is $Y_k \sim \mathcal{N}(0, 1)$. To get good agreement with theory, you may have to take a rather small δ . You probably can take a = -1, but you may want to try other values. There is no template program to download, but you have done all the things here before in some form.