Assignment 4, due October 26

Corrections (check the class message board): (none yet.)

1. For Brownian motion, the distribution of $X_{t_{s}}$ conditional on \mathcal{F}_{t} is $\mathcal{N}\left(X_{t}, s-\right.$ $t)$. From this it is possible to show that if $X_{t} \sim u(x, t)$, then u satisfies the heat equation. The Ornstein Uhlenbeck process is defined as the limit as $\delta \rightarrow 0$ (in the sense of weak convergence of distributions) of the approximations

$$
X_{t_{k+1}}^{(\delta)}=(1-\delta) X_{t_{k}}^{(\delta)}+\sqrt{\delta} Y_{k} .
$$

Here, as before, $t_{k}=k \delta$ and the Y_{k} are iid $\mathcal{N}(0,1)$.
(a) Suppose that $X_{0}^{(\delta)}=0$ and show that $X_{t_{k}}^{(\delta)}$ is Gaussian.
(b) Assume that $X_{t}^{(\delta)} \stackrel{d}{-} X_{t}$. Show that the distribution of $X_{t_{s}}$ conditional on \mathcal{F}_{t} is $\mathcal{N}\left(e^{-t} X_{t}, \sigma^{2}(s-t)\right)$. Find the formula for $\sigma^{2}(s-t)$
(c) Use this to write a formula of the form

$$
X_{s}=e^{-(s-t)} X_{t}+\text { independent Gaussian . }
$$

(d) Use that to discover the PDE that the PDF of X_{t} satisfies. It has $\frac{1}{2} \partial_{x}^{2} u$ and another term.
2. (computing) Write Brownian motion simulations in R to verify the two formulas we did in class for Brownian motion hitting and survival. Suppose X_{t} is a standard Brownian motion with $X_{0}=0$ and $\tau_{a}=\min \left\{t \mid X_{t}=a\right\}$. The PDF of τ is

$$
f(t)=\frac{1}{\sqrt{2 \pi t^{3}}} e^{-\frac{a^{2}}{2 t}} .
$$

The PDF of surviving particles (those with $\tau_{a}>t$) is

$$
u_{a}(x, t)=\frac{1}{\sqrt{2 \pi t}}\left(e^{-\frac{x^{2}}{2 t}}-e^{-\frac{(2 a-x)^{2}}{2 t}}\right) .
$$

Do simulations to make a large number of sample paths and make histograms of the hitting times and of the density of surviving particles and plot them against the theoretical values. To simulate a Brownian motion path, choose a small δ and use the scaling formula

$$
\left.X^{(\delta)}\right)_{t}=\sqrt{\delta} \sum_{k \delta<t} Y_{k} .
$$

In practice, you can just get values at the times $t_{k}=k \delta$. Assuming $a<0$, the simulated hitting time can be

$$
\tau_{a}^{(\delta)}=\min \left\{t_{k} \mid X_{t_{k}}^{(\delta)}<a\right\}
$$

It should not matter what the distribution of the Y_{k} is, but an easy one is $Y_{k} \sim \mathcal{N}(0,1)$. To get good agreement with theory, you may have to take a rather small δ. You probably can take $a=-1$, but you may want to try other values. There is no template program to download, but you have done all the things here before in some form.

