
Stochastic Calculus, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2015/index.html

Always check the class message board before doing any work on the assignment.

Assignment 3, due October 5

Corrections (check the class message board): (none yet.)

1. (Conditioning, etc.) Suppose X1, . . . , X4 are the results of 4 coin tosses.
The possible results of a single toss are Xk = H or Xk = T. (An old
American coin had the head, for H, of a buffalo on one side and the tail,
for T, on the other.) The probability space Ω is the space of all 16 possible
sequences. The σ−algebra F reflects the state where you know only the
number of Xk with Xk = H, but not the values of k. For example, in F ,
the outcomes ω = HHTT and ω′ = THTH are indistinguishable. Consider
the function f(ω) which records the first k with Xk = H. Set f(TTTT) = 5
and f(HTHT) = 1. Let P be the partition corresponding to F .

(a) Show that there are 5 elements of P.

(b) List the elements of the equivalence class [HHHT] ∈ P.

(c) Calculate the numbers P (Bj).

(d) Suppose that P (ω) = 1/16 for each ω ∈ Ω. Calculate conditional
expectation g = E[f | F ]. You may express this as g(j), where j is
the number of H tosses in Bj ∈ P.

2. (Urn process) The urn process is a simple but not trivial one dimensional
random walk. The urn has m balls in all. At each time, t, Xt of them are
red and the rest are blue. To go from t to t + 1, you select one of the m
balls, each being equally likely to be chosen. You replace the selected ball
with a new independent one, making the new one red with probability p
and blue with probability 1− p. We will use it in later classes to see how
the Ornstein Uhlenbeck process arises as a limit.

(a) Calculate the transition probabilities cx = P(x→ x+ 1), and ax =
P(x→ x− 1), and bx = P(x→ x) = P( new ball same color as old ball).
Here x is the number of red balls before a ball is replaced. The formu-
las depend on m (the total number of balls), and p (the probability
to put back a red ball).

(b) Figure out the forward equation for un+1,x in terms of un,x−1, un,x,
and un,x+1, and the numbers ax, bx, and cx from part a.

(c) Write the equations satisfied by the steady state probabilities πi.
Show using algebra that these equations are satisfied by (possibly a
small variation on)

πx = px(1− p)m−x
(
m
x

)
. (1)
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The binomial coefficient is(
m
x

)
=

m!

x!(m− x)!
.

Hint: you can relate neighboring binomial coefficients using reasoning
such as (approximately)(

m
x+ 1

)
=

m!

(x+ 1)!(m− x− 1)!
=
m− x
x+ 1

(
m
x

)
.

(d) Give a more conceptual derivation of the solution formula (1) as
follows. Imagine that when you start, all the balls in the urn are
“stale”. Each time you put a new ball in, that ball is “fresh”. The
colors on the fresh balls are independent of each other, and each fresh
ball has probability p of being red. Eventually, all the balls will be
fresh. When that happens, the probability distribution of the number
of red balls is binomial.

(e) Stirling’s formula is the approximation

n! ≈
√

2πnnne−n =
√

2πn en log(n)−n .

Use Stirling’s formula (treating it as exact) to write an approximate
formula for πi when m i, and m − i are all large. Write this in the
form

πx ≈
√

m

2πx(m− x)
e−φ(x,m) .

Maximize φ over x (use calculus, differentiate with respect to x, ...).
Show that you get x∗ ≈ pm, and argue that this is the right an-
swer, using part c if necessary. Make a quadratic approximation to φ
about i∗ and use that to make a Gaussian approximation to π. Just
substitute x∗ into the prefactor. Do you get the same result as the
CLT? Note (not an action item) that you find from this a scaling
that x− x∗ is on the order of

√
m.

3. The ansatz method for solving equations is to guess the form of the solu-
tion, then find the precise solution by plugging your guess into the equa-
tion. It is not always satisfying, but it is great when it works. Consider
a simple random walk on Z with transition probabilities a, b, and c inde-
pendent of x.

(a) Write the backward equation for this process.

(b) Show that the backward equation has solutions of the form fn,x =
αn + (x−βn)2. Find the recurrence relations for αn and βn in terms
of αn+1 and βn+1.

(c) Directly from the process, derive equations for µn = E[Xn], and
σ2
n = var(Xn). You may assume µ0 = 0 and σ0 = 0.
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(d) Show that parts (b) and (c) are consistent, using the definition of the
quantity fn,i in the backward equation.

4. (computing) This assignment will get you started doing stochastic simula-
tion. You will simulate the simple urn process described above and check
that some of its properties agree with theory.

(a) Download the files UrnProcess.R and UrnProcessCheck.pdf. Put
them in a convenient directory where you will put your R files. Open
your R application in that directory, or, if you will use the command
line, just cd to that directory. If you use the R application, type:
source("UrnProcess.R") It should create a file UrnProcess.pdf

that is identical to UrnProcessCheck.pdf.

(b) Experiment with different values of p and m. Make another plot or
two showing what things can happen.

(c) Run the code with smaller values of T so see that the probabilities
u(x, t) converge to πx as t → ∞. Find T where this convergence
has not happened and larger T where it has. Show that you need
larger T if you have larger m. You may also need more paths, as the
histograms might start looking ragged.

(d) Add another curve to the graph that represents the CLT predictions
of πx. Make a couple of plots showing that this is not accurate for
small m, but gets better as m increases.
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