
Stochastic Calculus, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2015/index.html

Always check the class message board before doing any work on the assignment.

Assignment 1, due September 21

Corrections: (check the class message board)

1. (Central limit theorem) Suppose Yi are i.i.d. random variables with E[Yi] =
0, E

[
Y 2
i

]
= σ2, and E

[
Y 4
i

]
= µ4 <∞. SupposeXn = 1√

n
(Y1 + · · ·+ Yn).

The CLT says that as n → ∞, the distribution of Xn converges to
N (0, σ2). This means that if V (x) is a reasonable function of x and
X ∼ N (0, σ2), then E[V (Xn)] → E[V (X)] as n → ∞. But E[V (X)]
depends only on σ2. Therefore, if n is large, E[V (X)] depends very little
on details of the distribution of Yi, other than the variance. This exercise
checks that for V (x) = x4.

This exercise illustrates ideas and methods that are important for the
whole course. One is the trick of finding something you can calculate or
estimate to understand some general fact. The calculation may be a limit
(limn→∞An = A, say). The numbers An may be complicated, but the
complexity disappears as n→∞ to give a simple A. Here, the CLT is the
general fact.

This course will have many calculations like (1c). The pattern is that some
quantity of interest, An, is written as a big complicated sum, probably
involving many indices. Each term in the sum is the expected value of
something. Most of the expectations turn out to be zero (as here), or
nearly zero. The terms that are not zero can be calculated or estimated.
All of the terms go to zero as n → ∞, so it matters how many of which
kinds of terms there are. This is combinatorics. In this case, there are
four integers i, j, k, l in the range from 1 to n. One combinatorics question
is: how many combinations are there where all the integers are equal
(i = j = k = l)? A harder question is: how many pairings are there.
A pairing is a combination where every integer is equal to one of the
other integers, such as i = k, j = l. The answer depends on whether the
pairings must be distinct (e.g., i = k, j = l, but i 6= j). But this distinction
becomes irrelevant as n→∞.

In the end, there may be contributions to with different powers of n.
When n → ∞, the leading term is important. For example, suppose
Bn = 5n2 + 14n and Cn = 5n2 − n + 3, and Dn = 2n2 + 15n. For large
n, Bn is close to Cn because their leading terms agree. Even thought Bn
and Dn have 15n in common, their leading terms are different. Therefore
Bn is not close to Dn for large n.

(a) Show that if X ∼ N (0, σ2), then

E
[
X4
]

= 3σ4 . (1)
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Hint: Write the integral formula for the expectation, use x4e−x
2/2 =

x3
(
xe−x

2/2
)

, and

xe−x
2/2σ2

= Const · ∂xe−x
2/2σ2

,

and integrate by parts.

(b) Conclude that the variance of X2 is var
(
X2
)

= 2σ4. We will use this
formula many times this semester.

(c) Write the formula for E
[
X4
n

]
. Hint: Use

X4
n =

1

n2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

YiYjYkYl ,

Take the expectation and figure out which of the terms are different
from zero. Among those are terms that involve E

[
Y 2
i Y

2
j

]
= σ4 if

i 6= j, and terms that involve E
[
Y 4
i

]
= µ4. You need to figure out

how many terms of each kind there are.

(d) From your formula for part 1c, show that E
[
X4
n

]
→ 3σ4 as n→∞.

This does not have to be a formal mathematical proof, just use the
fact that 1

n → 0 as n → ∞. The CLT says that the influence of µ4

should disappear in the limit n→∞.

2. (Student t−distribution, part 1) The Student t−distribution is important
in statistics because it is related to the accuracy of estimates of the mean
of a Gaussian random variable. That is because of part (2j), which shows
that the distribution of the t statistic is independent of the underlying
mean and variance. It is becoming widely used also because it is a simple
probability distribution with an explicit PDF that has power-law fat tails
depending on a parameter. Suppose X ∼ N (µ, σ2) is a one dimensional
Gaussian. Suppose Xi are independent samples of X. An estimator of
the distribution mean is the sample mean:

µ̂ = X =
1

n

n∑
i=1

Xi . (2)

An estimator of the variance is

σ̂2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
. (3)

Both µ̂ and σ̂2 are random variables. This exercise studies their distribu-
tion.

(a) Show that if Xi is replaced by Xi − µ, then the distribution of σ̂2

is unchanged and the distribution of µ̂ is only shifted by µ. This is

2



mainly theoretical because you are unlikely to know µ in practice.
The distribution of Xi − µ is N (0, σ2). From now on, assume that
µ = 0.

(b) If Xi is replaced by 1
σXi, how do the random variables µ̂ and σ̂2

change? From now on, assume σ = 1, so Xi ∼ N (0, 1).

(c) Let v1 ∈ Rn be the column vector v1 = 1√
n

(1, . . . , 1)t. Find ‖v1‖l2 .

Show that there are vectors v2, . . ., vn so that the vectors v1, v2,
. . ., vn are an orthonormal basis of Rn. You can do this by giving
a formula for v2, . . ., vn, or by using abstract theorems (if you state
them completely).

(d) Let v ∈ Rn be any unit vector (‖v‖ = 1, ‖v‖ = ‖v‖l2 everywhere in
this exercise). Let S ⊂ Rn be the plane of vectors perpendicular to
v. That is, x ∈ S if and only if xtv = 0. The orthogonal projection of
x onto S is the y ∈ S that minimizes ‖x− y‖. Show the basic facts
about projections, not necessarily in this order:

i. y = x− (xtv) v ((xtv) is the v component of x.)

ii. y is perpendicular to x− y (the geometry of l2 projection)

iii. ‖x‖2 = ‖y‖2 + (xtv)
2

(the Pythagorean theorem)

(e) From now on, S is the plane perpendicular to v1 of part (2c). Let ~X
be the column vector

~X =


X1

X2

...
Xn


Show that X = 1√

n
~Xtv1.

(f) Let Yi = ~Xtvi for i = 2, . . . , n. Show that the Yi are independent of
each other, independent of X and have Yi ∼ N (0, 1).

(g) Let ~Y be the orthogonal projection of ~X onto S. Show that∥∥∥~Y ∥∥∥2 =

n∑
i=2

Y 2
i =

n∑
i=1

(
Xi −

(
~Xtv1

)
v1,i

)2
=

n∑
i=1

(
Xi −X

)2
(h) Show that the random variables σ̂2 and µ̂ are independent.

(i) The chi square distribution with k degrees of freedom is defined as
the distribution of Q = Z2

1 + · · · + Z2
k , where Zi ∼ N (0, 1) are in-

dependent. This is written Q ∼ χ2
k. Show that σ̂2 ∼ 1

n−1χ
2
n−1 and

that E
[
σ̂2
]

= 1.

(j) Return now to Xi ∼ N (µ, σ2) with µ 6= 0 and σ2 6= 1. Then X is
normal with mean µ and standard deviation σ√

n
. We want to quantify
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µ̂ − µ, which is the difference between the estimated mean and the
unknown true mean. More precisely, we want to quantify how many
standard deviations µ̂ is from µ. But we do not know σ, only the

estimated σ̂ =
√
σ̂2. The t–statistic is the difference between µ̂ and

µ, measured in estimated standard deviations of µ̂:

µ̂ = µ+ tσ̂µ̂ .

Show that this leads to

t =

√
n (µ̂− µ)√

σ̂2
. (4)

Show that t has the same distribution as

t =

√
n− 1Z√
χ2
n−1

, (5)

where Z is a one dimensional standard normal and χ2
n−1 is an inde-

pendent chi-square random variable with n − 1 degrees of freedom.
Conclude that the t in (4) is independent of the parameters µ and σ.
This independence is the basis of the Student t−test in statistics.

(k) (not an action item) This exercise illustrates the general principle
that linear algebra, even abstract linear algebra, is a good way to
understand multivariate Gaussians. It illustrates how important it
is that you make Gaussian random variables, the Yi in this case,
independent simply by making them have zero covariance, which you
calculate using linear algebra.

3. Part (2) is all you need to know about the t−statistic to do statistics.
But the formula for the density of the t random variable is useful in many
other modeling problems. In this problem, C represents a normalization
constant that may be different in different places.

(a) Let Q ∼ χ2
n. Let F be the distribution function F (q) = Pr(Q ≤ q).

Let f(q) = F ′(q) be the probability density. Show that

F (q) = C

∫
‖x‖2≤q

e−‖x‖
2/2 dx = C

∫ √q
r=0

rn−1e−r
2/2 dr .

Conclude that
f(q) = Cq(n−2)/2e−q/2 . (6)

(Note: the three C values above are all different. Their values do not
matter and I hope you can do the exercise without writing formulas
for them. There is a formula for the C in (6) that involves the
gamma function, so the density (6) is sometimes called the gamma
distribution.)
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(b) The t–distribution with n degrees of freedom is the distribution of
the random variable

T =

√
nZ√
χ2
n

,

where Z and χ2
n are independent. We want f(t), which is the prob-

ability density of T . This is “clearly” symmetric: f(t) = f(−t)
(why??). Since f(−t) = f(t), we can find f from a modified distribu-
tion function F (t) = Pr(|T | ≤ t), which satisfies 2F ′(t) = f(t). Show
that |T | ≤ t is equivalent to |Z| ≤ t

√
Q/
√
n. Write the integral over

z that represents

P (t, q) = Pr
(
|Z| ≤ t√q/

√
n
)

for fixed t and q. Then write the double integral over z and q that
represents the probability.

P̃ (t) = Pr
(
|Z| ≤ t

√
Q/
√
n
)

when Q is random. The variable t appears only in the limit of inte-
gration of the inner dz integral.

(c) Differentiate this expression with respect to t to get a one dimensional
integral expression of the form

f(t) = C

∫ ∞
q=0

qpe−a(t)q dq ,

with a(t) and p explicitly given as simple functions of n and t.

(d) Use the change of integration variable a(t)q = r to get an explicit
formula

f(t) =
C

a(t)p+1
.

If you did all this correctly, the answer should be

f(t) =
C(

1 + 1
n−1 t

2
)n/2 .

This is the Student t−density with n − 1 degrees of freedom. More
generally, the t−density with parameters µ and σ and n degrees of
freedom is

f(x;µ, σ, n) =
C(

1 +
(x− µ)2

nσ2

)n/2+1
. (7)

There is an explicit formula for C, also involving the gamma function,
but it is complicated and rarely is needed. An important feature of
this formula is that n does not have to be an integer. Of course, it
was an integer in (5), but even that is unnecessary if we use (6) to
define the chi-square distribution for non-integer n.
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(e) Show that the probability density (7) has a power law tail, which
means that f(x) ≈ Cx−p as x→ ±∞.

(f) Show that the t–density converges to the corresponding normal as
the number of degrees of freedom goes to infinity. One can do this
abstractly using Slutsky’s theorem, but here please just evaluate the
limit of (7) as n→∞. Of course, the constants C depend on n, but
these also have a limit, which you don’t need to compute.

(g) Clearly µ = E[X] for the density (7). Show that var(X) < ∞ for
n > 1 but the formula σ2 = var(X) is not true. Hint #1: It suffices
to show E

[
X2
]
6= 1 when µ = 0 and σ = 1, and for some value of

n. Hint #2: This may be very time consuming. Please do not do it
unless you have lots of free time and everything else is finished. The
fact is more important than the proof.

(h) (not an action item) Why assign this big computation? One reason
is to practice integration in n dimensional spaces with unknown con-
stants. Another is to become familiar with the density (7) with an
arbitrary power law tail.

4. (Working with R) This assignment is a rapid introduction to some aspects
of scientific computing and visualization in R. This class uses R because
it seems to be the scripting language that is easiest to install and use for
all the platforms people are likely to have. But it is still possible that
something that works for me doesn’t work for you because our platforms
are a little different. Please post any problems you encounter on the class
message board. It is likely others will have similar problems. Take the
stuff about coding standards seriously, especially if you are a beginning
programmer. Taking 15 minutes to make your code more readable and
automatic can save days of debugging. Follow the links on the class Re-
sources page to read more about programming style.

(a) If you do not have the R package on your computer, install it from
the web. There are instructions for this on the class web page. It
should be easy. Once you install R and bring it up, you should see a
prompt that looks like this:

>

Type the command x = 2.3. It creates a variable in R called x, gives
it the value 2.3, then gives you a prompt for the next command Now
the R window should look like

> x = 2.3

>

If you type an expression that evaluates to a number, R should print
that number, then give you a prompt. For example, typing x*x

should give 2.32 = 5.29. The R window should look like this:
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> x = 2

> x*x

[1] 5.29

>

(b) You should do almost all your R work with scripts rather than directly
at the command line. An R script is a file that contains a sequence of
R commands. Its filename ends with .R. Create a file dummy.R that
contains the lines

x = 2

x*2

You run a script at the R command line by typing source("script name.R").
You run the dummy.R script by typing source("dummy.R"). Unfor-
tunately, you don’t see the output.

> source( "dummy.R")

>

You need to add a command that types the output in the R window.
One of these is cat (which stands for ”catenate”, it’s a long story).
If you change x*x to cat(x*x), you get

> source( "dummy.R")

5.29>

You see the answer, but it is on the same line as the next prompt. The
reason is that cat is too literal. It sent to the terminal a sequence of
characters representing x*x, but lacking the character crlf (carriage
return, linefeed), that says “go to the beginning of the next line”.
This character is written \n. If you add the line cat("\n"), this
sends to the terminal the string (a sequence of characters in quotes),
which puts you at the beginning of the next line. If dummy.R is

x = 2.3

cat(x*x)

cat("\n")

then typing source("dummy.R") should give

> source( "dummy.R")

5.29

>

You should use the R command sprintf (“string print file”) to cre-
ate informative output lines with numbers and text together. The
example scripts have examples.

(c) Download and save the three R scripts IntersectingCurves.R, and
IntersectingCurvesPlot.R, and PlotDensitites.R into some di-
rectory (folder). If you have a Mac or a Linux box, go to the directory
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where you saved them and type source("IntersectingCurves.R").
This should create a file called PlotDemo.pdf. Compare this to the
file PlotDemoCheck.pdf, which is posted with the assignment. The
figures should be the same. Run the script PlotDensitites.R. The
result should be

> source("PlotDensitites.R")

Welcome to R world

Computing with mu = 0.000, sigma = 2.000, and n = 5.000

numerical Gaussian integral = 5.0133, error = 2.117e-06

numerical Gaussian variance = 1.0000, error = -3.000e+00

t integral = 5.266

Gaussian variance = 4.000, t variance = 1.000, t var - Gaussian var = -3.000e+00

normalized difference is = 1.264

>

(d) The script PlotDensities.R is designed to compute the variance of
X when X has the t−distribution with n degrees of freedom. The
script does not assume that you know the normalization constant in
the probability density. This is a common situation, you X ∼ f(x),
and f(x) = Cu(x), where you have a formula for u but don’t know
C. Of course,

1

C
=

∫ ∞
−∞

u(x) dx .

We estimate the integral numerically as∫ ∞
−∞

u(x) dx ≈
∫ xmax

xmin

u(x) dx ≈
nx∑
i=1

u(xi)∆x .

The integration points are uniformly spaced in the integration in-
terval, which leads to xi = xmin + (i − 1)∆x, and ∆x = (xmax −
xmin)/(nx − 1). The script applies this first to the Gaussian, where
you know the answer, then to the t−distribution, where you don’t.
You should play with the computational parameters nx and xmin to
see what it takes to get an accurate answer for the Gaussian. It is
remarkable how large ∆x can be and still get very high accuracy.
The C for the t−distribution converges to the C for the Gaussian as
n→∞. Play with the code to see this happen numerically.

(e) Modify the script PlotDensities.R to compute the variances of the
Gaussian and the t−distributed variable. You know the exact answer
for the Gaussian, which is a check on the numerics. For the Gaussian,
you just need to modify the line

g_var = g_var + ( g( x, mu, sig)/g_int)*dx

to estimate

E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2
u(x)

C
dx .
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You should see that the variance of the t−distributed variable with
parameter σ is larger than σ2, but converges to σ2 as n→∞.

(f) To start learning R, figure out how to change the cubic to a quadratic
y = ax2. The number of intersection points will be different.

(g) Add code to PlotDensities.R to print in one plot figure the normal-
ized Gaussian and t densities. You can get most of the code you need
from IntersectingCurves.R and IntersectingCurvesPlot.R. Make
sure to put computational parameters, n, µ, σ into the plot title or
elsewhere on the plot. For this, you will have to learn to use sprintf.
Correct the legend to refer to the two curves correctly. Hand in one
or two plots, but at least one with n = 5 to see the difference between
the two curves, and the fat tails of the t.
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