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1 Ito Stochastic Differential Equations

1.1. Notation: We switch back to the notation W; for Brownian motion. We
use X; to denote the solution of the stochastic differential equation (SDE). When
we write forward and backward equations for X;, the independent variable will
still be z. Often we work in more than one dimension. In this case, W; may be
a vector of independent Brownian motion paths. As far as possible, we will use
the same notation for the one dimensional (scalar) and multidimensional cases.
The solution of the Ito differential equation will be X;. We sometimes call these
“diffusions”.

1.2. The SDE: A stochastic differential equation is written
dXt = a(Xt, t)dt + O'(Xt, t)th . (1)

A solution to (1) is a process X (W) that is an adapted function of W (X, € F,
where F; is generated by the values W for s < t), so that

T T
X = Xo+ / a( Xy, 1)t + / o (Xo, )dW, | @)
0 0

Because X; is adapted, the Ito integral on the right of (2) makes sense. The
term a(Xy,t)dt is called the “drift” term. If a = 0, X; will be a martingale;
any change in E[X;] is due to the drift term. The term o(Xy,t)dW; is the
“noise” term. The coefficient ¢ may be called the “diffusion” coefficient, or
the “volitility” coefficient, though both of these are slight misnomers. The
volitility coeflicient determines the size of the small scale random motions that
characterize diffusion processes. The form (1) is really just a shorthand for (2).
It is traditionally written in differential notation (dXy, dt, dW;) as a reminder
that Ito differentials are mor subtle than ordinary differentials from calculus
with differentiable functions.

What separates diffusion processes from simple Brownian motions is that in
diffusions the drift and volatility coefficients may depend on X and ¢. It might
be, for example, that when X is large, its fluctuation rate is also large. This
would be modelled by having o(x,t) being an increasing function of x.

In the multidimensional case, we might have X; € R™. Clearly, this calls for
a(x,t) € R™ also. This might be called the “drift vector” or “velocity field” or
“drift field”. The volitility coeflicient becomes an n x m matrix, with W, € R™
being m independent sources of noise. The case m < n is called “degenerate
diffusion” and arises often in applications. The case n = m and ¢ non singular
is called “nondegenerate diffusion”. The mathematical character of the forward
and backward equations is far more subtle for degenerate diffusions than for
nondegenerate diffusions. The case m > n arises in practice only by mistake.



1.3. Existence and uniqueness of Ito solutions: Just as the Ito value of the
stochastic integral is one of several possible values depending on details of the
definition, we might expect the solution of (1) to be ambiguous. We will now see
that this is not so as long as we use the Ito definition of the stochastic integral
in (2). The main technical fact in the existence/uniqueness theory is a “short
time contraction estimate”: the mapping defined by (2) is a contraction for if
t is small enough. Both the existence and uniqueness theorems follow quickly
from this.

Suppose X; and Y; are two adapted stochastic processes with Xg = Y. We
define X, from X, using (2) by

T T
XT = / a(Xt, t)dt + / O'(Xt, t)th .
t=0 t=0

In the same way, Y is defined from Y. We assume that a and o are Lipshchitz
continuous in the x arguments: |a(x,t) — a(y,t)| < M |z — y|, |a(z,t) — a(y,t)| <
M |z — y|. The best possible constants in these inequalities are called the “Lip-
schitz constants” for ¢ and o. The mapping X — X is a“ contraction” if

|X-7|<alx -y,

for some o < 1, that is, if the mapping shortens distances between objects by
a definite ratio less than one. Of course, whether a mapping is a contraction
might depend on the sense of distance, the norm ||-||. Because our tool is the
Ito isometry formula, we use

IX - V|2 = max E [(Xt - Ytﬂ .

0<t<T

The contraction lemma is:
Lemma: If ¢ and o are Lipshcitz with Lipschitz constant M, then

_ 2
HX—YHT <AMPT|X - Y% . (3)
For the proof, we first write
R R T T
Xr—Yr = / (a(Xi,t) — a(Ys,t))dt +/ (0(X¢,t) — (Vi 1)) dW; .
t=0 t=0

We have E[(Xp — Y7)?] < 24 + 2B where

=0

A=E (/T (a(Xe ) — a(Yt,t))dt>

and

B=E (/T (o(X¢,t) — U(Y,57t))th>

=0



Bounding the B term is an application of the Ito isometry formula. Indeed,

B< /:OE [(O(Xt,t) - a(Yt,t)ﬂ dt ,

Using the Lipschitz continuity of ¢ then gives

B < M?T max E[(X; — Yt)2] )
0<t<T

which is the sort of bound we need.
The A term is an application of the Cauchy Schwartz inequality

T 2 T T
(/ (a(Xt,t)a(Yt,t))dt> g/ (a(Xt,t)fa(Yt,t))2dt~/ 1dt

=0 =0 t=0

If we now use the Lipschitz continuity of a and take expectations of both sides,
we get
A< M?T max E[(X,-Y:)?],
0<t<T

These two inequalities prove the contraction lemma estimate (3).

1.4. Uniqueness: The contraction inequality gives a quick proof of the
uniqueness theorem. We will see that if X is a random variable, then the
solution up to some time 7" is unique. Of course, then X7 is a random variable
and may be thought of as initial data for the next 7' time period. This give
uniqueness up to time 27, and so on. Suppose X; and Y; were two solutions of
(2). We want to argue that E[(X; — Y;)?] < aE[(X; — Y;)?] for a < 1. This is
impossible unless [(X; — Y;)?] = 0, that is, unless X; = Y;. From (3), we will
have a < 1if T < 1/4M?2.

The contraction lemma does not say E[(X; — Y;)?] < aE[(X; — Y;)?]. To
work with the information it actually gives, define my = max, 1 E[(X; — Y3)?,
and My = max;<7 E[(f(t — ?}/)2] From the definitions, it is clear that m; is an
increasing function of ¢, so that (3) implies that E[(f(t — Y’t)Q] < am; < amr
if T > t. That is, (3) implies that mr < amp. This gives a contradiction
as before: Since X and Y are solutions, we have m = m, so mpr < amrp is
impossible unless m7 = 0.

1.5. Existence of solutions via Picard iteration: The contraction inequality
(3) allows us also to show that there is an Xp satisfying (2), at least for T' <
1/4M?. You might remember this construction, Picard iteration, from a class
in ordinary differential equations. The first “iterate” does not come close to
satisfying the equations but just gets the ball rolling: Xt(o) =Xoforallt<T.
This Xt(o) does not depend on Wy, but it will still be random if X is random.
For k£ > 0, the iterates are defined by

t t
x® = / a(X*V tydt + / o (X 1AW, . (4)
s=0 s=0



The contraction inequality implies that the Picard iterates, X (kj, converge as
k — oco. In (3), take X to be X*~Y and ¥ = X, Then X = X* and
Y = X* D If we define

2
mif) = max B(X - x9)°]

and use the ideas of the previous paragraph, (3) gives

mg,fﬁ_l) < amgpk) .

This implies that, for any ¢ < T, the iterates Xt(k) have E[(Xt(kﬂ) — Xt(k))z] <
m(TO ), which (as we saw in the previous lecture) implies that lim; — coX,
exists. The contraction inequality also shows (reader: think this through) that

this limit, X, satisfies (2) and therefore is what we are looking for.

1.6. Diffusions as martingales: If the drift coefficient in (1) vanishes, a(z,t) =
0, then the process X; is a martingale. Indeed, any process X; = fot FodWy,
with a nonanticipating F is a martingale. There is a very general converse to
this statement. More or less (leaving out the technical details, obviously), any
adapted process, X;, with continuous sample paths,

P(“X; is a continuous function of ") =1,

has a representation in the form (1), except that in general, we must take o to be
a general adapted function of ¢, not necessarily a function of X; only. In discrete
time, a martingale, X, may be written as a sum of martingale differences, Y3 =
X — Xg_1, in that X = Xo + Z;:é Y;. The Ito integral representation of the
continuous time martingale X, is a continuous time version of the representation
of a discrete time martingale as a sum of martingale differences. What makes the
continuous time version really different (rather than just technically different) is
the unique role of Brownian motion. The proof has to construct the Brownian
motion path related to X.

1.7. The structure of correlated gaussians: In the multidimensional case,
o will be a matrix. We think of odW; as the source of noise. The several
components of cdW; may be correlated, modeling the fact that the noise terms
driving the several components of X; are correlated. The matrix o tells us
how to make correlated noises of varying strengths from uncorrelated noises of
constant strength, the components of W;. The role of ¢ is to correlate the noise
sources and to modulate their strengths.

One often hears people referring, for example, to tow correlated Brownian
motion paths, with correlation coefficient p. A simpler special case of this would
be standard normal random variables, Z; and Z5, with correlation p. If we sup-
pose that (Z7, Z5) form a multivariate (bivariate) normal, the covariance matrix
has entries Cll = V&I‘(Zl) = 1, 022 = V&I‘(ZQ) = 1, and 012 = COV(Zl,ZQ) = p.
The correlation coefficient and the covariance are the same here because the



variances are both one. We can make such correlated normals from uncorre-
lated normals in the following way. Let U; and Us be independent standard
normals. Take Z; = Uy and Zs = pU; + /1 — p2Us. The term pU; in the Z
formula gives the correct correlation with Uy, provided the rest of Zs is inde-
pendent of Z;. The term /1 — p2Us gives enough independent noise so that
var(Z3) = 1. In matrix form, this is

Zy\ _ (1 0 Ux
(2)-00 v ) ()
The point is that you can make correlated standard normals from independent
ones, but you need a matrix, o.

And the ¢ you need is not unique. Suppose o is an n X M matrix, and o7 =
0@, where @) is an m x m orthogonal matrix. If U is an m vector of independent
standard normals, then Z = oU, and Z(!) = o,U are each multivariate normals
with the same probability distribution. That is, Z and Z(1) are indistinguishable
if you do now know U. Applied to SDEs, this says that Z and Z(!) produce
paths X and X that have are indistinguishable if you do not know W. In
particular, the “QR” factorization of ¢*, w(i.e. the “LQ” factorization of o)
says that we may take o to be lower triangular. If o is lower triangular, the
components of W beyond the n'" all have coefficient zero. This is why it is a
mistake if you have more sources of noise than components of X.

2 Ito’s Lemma

We want to work out the first few Picard iterates in an example. This leads to a
large number of stochastic integrals. We could calculate any of them in an hour
or so, but we would soon long for something like the Fundamental Theorem
of calculus to make the calculations mechanical. That result is called “Ito’s
lemma”. Not only is it helpful in working with stochastic integrals and SDE’s,
it is also a common interview question for young potential quants. Here is the
answer.

2.1. The Fundamental Theorem of calculus: The following derivation of the
Fundamental Theorem of ordinary calculus provides a template for the deriva-
tion of Ito’s lemma. Let V(t) be a differentiable function of ¢ with 9;V being
Lipschitz continuous. The Fundamental Theorem states that (writing 9;V for
dV/dt although V' depends only on t):

V(T) = V(0) = /OT v = /OTBtV(t)dt.

This exact formula follows from two approximate short time approximations,
the first of which is

V(t+ At) — V(t) = 0,V (t)At + O(At?) .



The second approximation is (writing 9;V (s) for V'(s)):
t+At
/ 0,V (s)ds = OV () At + O(AL2) .
t

Using our habitual notation (At = T/n = T/2F, t, = kAt, Vi = V(t1,)), we
have, using both approximations above,

1
Vo—=Vo = (Vis1 — Vi)

3
|

1T
—= O

(]

(0,V (tr) At + O(At?))

T
— O

(]

(/tk“ O,V (tx)dt + O(At?))

k=0 Ytk

/T 0,V (t)dt + nO(AP) .
0

Because nAt = T, nAt? = TO(At) — 0 as n — oo.

2.2. The Ito dV;: The Fundamental Theorem may be stated dV = 9,V dt.
This definition makes

/ L= v v (5)
0

We want to extend this to functions V; that depend on W as well as t. For
any adapted function, we define dV; so that (5) holds. For example, if U; is an
adapted process and Vp = fOT U, dW,, then dV; = U,dW; because that makes
(5) hold. Ito’s lemma is a statement of what makes (5) hold for specific adapted
functions V;.

2.3. First version: Our first version of Ito’s lemma is a calculation of dV;
when V; = V(W,,t) and V and W are one dimensional. The result is

1
dVy = 0w V/(Wy, t)dW; + 5aEVV(Wt,t)dt + 0.Vt . (6)

What’s particular to stochastic calculus is the “Ito term” %8‘2,VV(Wt, t)dt. Even
if we can’t guess the precise form of the term, we know something has to be
there. In the special case V; = V(W;), the 9;Vdt term is missing. The guess
dV = dwVdW; would give (sce (5)) V(t) — V(0) = [ 8w VdW;. We know
this cannot be correct: the right side is a martingale while the left side is not
(see assignment 5, question 1). To make the martingale integral into the non
martingale answer, we have to add a dt integral, which is why some term like
505 V(Wy, t)dt is needed. A motivation for the specific form of the Ito term is
the observation that it should vanish when V is a linear function of W.



2.4. Derivation, short time approximations: The defivation of Ito’s lemma
starts with the stochastic versions of the two short time approximations behind
the Fundamental Theorem. For convenience, we drop all ¢ subscripts and write
AW for Wt—‘,—At — Wt. We have

V(Wirart + At) = V(W,t) =
owV (W, ) AW + %aﬁvwm HAW? + 0,V(W, t) At + O(A*/?) .

The other short time approximation is provided by assignment 7, question 3,
applied to Oy V:

t+At
1
/ OowV (W, s)dW, = 8WV(Wt,t)AW+§8§VV(W, ) (AW2—At)+O(AE?) .
t
For dt integrals, the result is simply
t+At
/ U(W,, s)ds = U(W, )AL+ O(A#2 .
t
The error term is O(At?/?) rather than O(At?) because W; is not a Lipshcitz
continuous function of £. We conbine these approximations with a little algebra

(AW? = At + (AW? — At), which might be considered the main idea of this
section) gives

t+At
AV = / owV (W, t)dW,
t
t+At 1
+/ (§6§VV(WS7S)+@V(WS7S)> ds
t

+O% V(W 1) (AW? — At) + O(AE*?) .

As with the Fundamental Theorem, we apply this with ¢ = ¢, (in the habitual
notation) and sum over k, giving:

T
+/ (%aﬁVV(Wt,t)+atV(Wt,t)> dt
0

n—1
+ 37 0V (Wi 1) (AWE — Al) + O(TVAT) .
k=0

2.5. The non Newtonian step: The final step in deriving Ito’s lemma has no
anologue in the proof of Newton’s Fundamental Theorem of calculus. We study

the term
n—1

A= 05V (Wi, th) (AWE — At)

k=0



and show that A — 0 as At — 0 (actually, as L — oo with At = T//2L) almost
surely. Previous experience might lead us to calculate E[A%]. This follows a
well worn path. We have the double sum expression:

B3] = gzkE (,00,] -

The j # k terms have expected value zero because (if k > j) E[AW? — At |
Fi]) = 0. We get a bound for the j = k terms using E[(AW? — At)? | F, ] =
2A¢t%:

E |02,V (W, )2 (AWE — At)® |.7-'tk} <C-A2.

Altogether, we get E[A2] < CAt = C27L, which implies that A, — 0 as
L — oo, almost surely (see the next paragraph). This completes our proof of
the first form of Ito’s lemma, (6).

2.6. A Technical Detail: Here is a proof that uses the inequalities F[A2] <
Ce P for some B > 0 and proves that A;, — 0 as L — oo almost surely. The
proof is an easier version of an argument used in the previous lecture. As in
that lecture, we start with a observation, this time that |Ar| — 0 as L — oo if
> 71 |AL] < co. Also, the sum is finite almost surely if it’s expected value is
finite. That is, if .7, E[|AL|] < co. Finally, the Cauchy Schwartz inequality
gives E[|A;] < Ce P/2. Since this has a finite sum (over L), we get almost
sure convergence Ay — 0 as L — oo.

2.7. Integration by parts: In ordinary Newtonian (and Leibnitzian) calculus,
the integration by parts identity is a consequence of the Fundamental Theorem

and facts about differentiation (the Leibnitz rule). So let it be for Ito. For
instance, integration by parts might lead to

T T
/ tdW, = TWp — / Wedt . (7)

0 0
We can check whether this actually is true by taking the Ito differential of tW;:

d(tW,)

1
Ow (EW,)dW; + 58% (tWy)dt + 0, (tWy)dt
tdW, + Widt .

This implies that
T T
TWr :/ tdWy +/ Wedt ,
0 0

which is a confirmation of (7). We can get a more general version of the same
thing if we apply the Ito differential to f(t)g(W;) (reader: do this).

2.8. Doing [ W,dW,; the easy way: If Ito’s lemma is to play the role of
the Fundamental Theorem of calculus, it should help us calculate stochastic



integrals. In ordinary calculus we calculate integrals by differentiating guesses
to see which guess works. After a while, we become more systematic guessers.
To compute a stochastic integral, we need to guess a function F}; so that dF; is
the integrand. A first example of this is

T
Yy = / WidW, (8)
0

Using ordinary calculus as a clue, we might try F; = %Wf. We calculate, using
(6), ,
dF = Oy FdW + §8§Vth + O, F =WdW +dt +0.

We see that we did not get the desired answer, dF' is not the integrand WdW.
However, it is almost right, missing by dt. To correct for this, try the more
sophisticated guess F' = %Wf — t. Repeating the differentiation, we see that
indeed

1
d(§Wt2 —t) = WidW; .

as desired. Ito’s lemma than tells us that

1 1 T
§W%—T—(§W%—T) :/ Wi dW; .
0

2.9. [ W2dX, the easy way: To calculate

T
/ W2dW,
0

we again start with the calculus guess, which this time is F = 1W?. The Ito

3
differential of this is ) )

dgwf = W2dW; + 5 2Wadt .
This differs from our integrand (W2dW;) by the term W;dt. We can get W,dt
by differentiating fot Wsds. Therefore,

T 1 T
/ Wf’th:—W%—/ Wedt .
0 3 0

If you still consider this to be a guess, you can check it by taking the differential
of both sides. The left side gives W2dWr. The right side gives WZdWyp +
Wrdt — Wrpdt, which is the same thing.

2.10.  Solving an SDE: Here is one way to solve the SDE:

dXt = Xtth 3 X() =1. (9)



The ordinary calculus result would be X = €. To see whether this satisfies
(9), we calculate the Ito differential:

1 1
degy = 8Wer1WdWT + 56‘2/1/€WTdt + 8teWTdt = e:,WdWT + §€WTdt .

The first term on the left is indeed X7dWr, so we need somehow to get rid of
the second term. After some false starts, we hit on the idea to try a solution of
the form X; = A(t)e"t. Now the differential is

d(A®)e™) = At)owe" dW; + A(t)%@%,ewtdt + 0, A(t)eVedt

At)elV dw, + A(t)%ew‘ dt + A(t)eVedt .

The first term on the right is the desired answer X;dW;. The second and third
terms will cancel if %A +A=0,ie. if A(t) = e7¥2. Our new guess, then, is
X, = eWt=t/2. We can check this with the calculation deVt—t/2 = ¢We—t/2qW,
(because, by design, the dt terms cancel).

A consistency check is that X; should be a martingale, because X =

fOT X:dW;, and the Ito integral always gives a martingale. We can check, for
example, that F[X;] =1 for any t.

2.11. Differentials of functions of X;: The formal formulation (1) of an Ito
SDE is in fact a relation among Ito differentials, which is precisely what (2) says.
We can also compute dV (X;) (or even dV (X4, t), which is more complicated but
not harder) using the reasoning in paragraphs 2.4 and 2.5 above. I will breeze
through the argument, commenting only on the differences. Some of the details
are left to assignment 8. We can calculate

AV(X) = dx V(@) AX, + %3§(V(X)AX2 +OAR?) .
Also
t+At 1
/ OxV(Xs)dX, = aXV(Xt)AXﬁQa?(V(Xt)(AX%a(Xt)?AtHO(At?’/?) :
t

The new feature is that E[AX?] = o(X;)2At+O(At?/?). After this, the deriva-
tion proceeds as before, eventually giving

1
dV(X;) = Ox V(Xy)d X, + §6§(V(Xt)a(Xt)2dt . (10)
2.12. The “Ito rule” dW?2? = dt: The first version of Ito’s lemma can
be summarized as using Taylor series calculations and neglecting all terms of

higher than first order except for dW?, which we replace by dt. You might think
this is based on the approximation AW? =~ At for small At. The real story is

10



a little more involved. The relative accuracy of the approximation AW? ~ At
does not improve as At — 0. Both sides go to zero, and at the same rate, but
they do not get closer to each other in relative terms. In fact, the expected
error, E[|[AW? — At|], is also of order At. If At = .1 then AW? is just as likely
to be .2 as .1, not really a useful approximation. The origin of Ito’s rule is that
AW? and At have the same expected value. For that reason, if we add up m
AW? values, we are likely to get a number close to mAt if m is large. We might
say ff dw? = f; dt, thinking that each side is make up of a large number (an
infinite number) of tiny AW? or At values. Remember that for any Q, the Ito
dQ is what you have to integrate to get (). Integrating dW? gives the same
result as integrating dt.

2.13. Quadratic variation: The informal ideas of the preceding paragraph
may be fleshed out using the “quadratic variation” of a process. We already
discussed the quadratic variation of Brownian motion. For a general stochastic
process, X;, the quadratic variation is
= 2
X)), =1 X1 — Xg) ™. 11
(XD, Aifgoz( k1 — X (11)

If we apply the approximation from assignment 8, question 2b, we get
n 5 n
Z(Xk-i-l - X)) = (Z U(Xk7tk)2AX/§> +O(nAt/2) .
k=0 k=0

Our usual trick is to use AX? = At + (AX? — At) to write the last sum as
an approximation of a dt integral plus something with mean zero that does not
add up to much. The result is

(X), = /O (X, t)ds .

In particular,
d(X), = o*(X;)dt .

Ito’s lemma for X; satisfying the SDE (1) may be written

dV(X;) = OxV(X,)dX; + %6§(V(Xt)d (X), . (12)

2.14. Geometric Brownian motion again: Here is another way to find the
solution of dX; = X,dt. Since we expect X; to be an exponential, we calculate
the SDE satisfied by Y; = log(X;). Ito’s lemma in the form (12) allows us to
calculate

1
dY; = Ox log(Xt)dXt+§8§( log(X;) X7dt

11



1 1 1
= — X, dW,+ = [ —=— ) X2dt
X, t+2< X,?) ¢
1
dy, = th—gdt.

This gives Y; = Yo+ W; — £. Since X; = e¥*, we get X; = Xoe"V*~/2, as before.

2.15. Remarks on the solution: The solution X; = X,eW+—t/2 provides some
insight into how martingales can behave and the importance of rare events. We
know that Brownian motion paths W, are on the order of v/T. Therefore for
large t, the exponent is W; — & ~ —t/2. That is, nearly all (not almost all)
geometric Brownian motion paths are exponentially small for any particular
large t. Nevertheless, since X; is a martingale, F[X;] = 1. Those rare paths
with W; > t/2 are just big enough and just likely enough to save E[X;] from
being exponentially small. For the record, P(W; > t/2) < e~*/%, is very small
(about 1/1000 for ¢ = 100). This means that if you simulate, say, 500 paths,
there is a pretty good chance that none of them is as big as the mean. Monte
carlo simulation is very unreliable in such cases.
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