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1 Integration with respect to Brownian Motion

While integrals of functions of Brownian motion paths are not hard to define,
integrals with respect to Brownian motion do give trouble. In fact, there is
some ambiguity about what the integral should be. The Ito integral is really
just a convention to choose one of the several possibilities. The Ito convention
is that the “stochastic integral” with respect to Brownian motion should be a
martingle.

Many financial models take the form of stochastic differential equations
(SDE). The definition of the solution of an SDE has the same ambiguity as
the stochastic integral with respect to Brownian motion. We again choose the
Ito convention that the solution as far as possible should be a martingale. In
fact, the solution of an Ito SDE is defined in terms of the Ito integral.

1.1. Integrals involving a function of t only: The stochastic integral with
respect to Brownian motion is an integral in which dXt (whatever that means)
plays the role of dt in the Riemann integral. The simplest case involves just a
function of t:

Yg =
∫ T

0

g(t)dXt . (1)

This integral is defined in somewhat the same way the Riemann integral is
defined. We choose n and ∆t = T/n and take

Y (n)
g =

n−1∑
k=0

g(tk)∆Xk , (2)

where ∆Xk = Xtk+1 − Xtk , and tk = k∆t. Since Y (n)
g is a sum of gaussian

random variables, it is also gaussian. Clearly E[Y (n)
g ] = 0. We will understand

the limit as ∆t → 0 (including whether it exists) if we calculate the limit of
var(Y (n)

g = E[Y (n)2
g . Since the ∆Xk are independent normals with mean zero

and variance ∆t, the variance of the sum is

var(Y (n)
g ) =

n−1∑
k=0

g(tk)2∆t .

The right side is the standard Riemann approximation to the integral
∫ T

0
g(t)2dt,

so letting ∆t→ 0 gives

E[Y 2
g ] = var(Yg) =

∫ T

0

g(t)2dt . (3)
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This may not have seemed so subtle, and it was not. Every reasonable definition
of (1) gives the same answer.

1.2. Different kinds of convergence: In the abstract setting we have a prob-
ability space, Ω, and a family of random variables Yn(ω). We want to take the
limit as n → ∞. The limit above is the limit “in distribution”. The proba-
bility density for Yn converges to the probability density of a random variable
Y . The cental limit theorem is of this kind: the probability density converges
to a gaussian. Another kind of convergence as “pointwise”, asking that, for
each ω (or almost every ω) the limit limn→∞ Yn(ω) = Y (ω) should exist. The
difference between these notions is that one gives an actual (function of a) ran-
dom variable, Y (ω), while the other just gives a probability density without
necessarily saying which Y goes with a particular ω. Proving convergence in
distribution for gaussian random variables is easy, just calculate the mean and
variance. Note that this does not depend on the joint distribution of Yn and
Yn+1. Proving pointwise convergence requires you to understand the differences
Yn+1 − Yn, which do depend on the joint distributions.

1.3. Proving pointwise convergence: The abstract setting has a probabil-
ity space, Ω, with a probability measure, and a sequence of random variables,
Xn(ω). The Xn could be just numbers (what we usually call random variables),
or vectors (vector values random variables), or even functions of another vari-
able (say, t). In any of these cases, we have a norm, ‖X‖. For the case of a
number, we just use the absolute value, |X|. For vectors, we can use any vec-
tor norm. For functions, we can also use any norm, such as the “sup” norm,
‖X(ω)‖ = max0≤t≤T |X(ω, t)|, or the L2 norm, ‖X‖2 =

∫
0≤t≤T X(ω, t)2dt. A

theorem in analysis says that the limit limn→∞Xn(ω) exists if

S(ω) =
∞∑
n=1

‖Xn+1(ω)−Xn(ω)‖ <∞ . (4)

This is easy to understand. The limit exists if and only if the sum, X1(ω) +∑
nXn+1(ω) − Xn(ω), converges. The condition (4) just says that this sum

converges absolutely. It is possible that the limit exists even though S is infinite.
For example (forgetting ω) if Xn = (−1)n/n.

The limit will exist for (almost) every ω if S(ω) < ∞ for (almost) every ω.
We know that S <∞ almost surely if E[S] =

∫
S(ω)dP (ω) <∞. The expected

value criterion is useful because we might be able to calculate the expected
value, particularly in a Stochastic Calculus class that is devoted mostly to such
calculations. Of course, it is possible that S < ∞ almost surely even though
E[S] = ∞. For example, suppose S = 1/Z2 where Z is a standard normal
S ∼ N (0, 1) (OK, not likely for (4), but that does not change this point). In
jargon, we would say these criteria are not “sharp”; it is possible to fail these
tests and still converge. As far as I can tell, a sharp criterion would be much
more complicated, and unnecessary here. From (4), the criterion E[S] < ∞
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may be stated:
∞∑
n=1

E
[
‖Xn+1 −Xn‖

]
<∞ . (5)

We continue our succession of convenient but not sharp criteria. It is of-
ten easier to calculate E[Y 2] than E[|Y ‖]. Fortunately, there is the “Cauchy
Schwartz” inequality: E[|Y |] < E[Y 2]1/2 (proof left to the reader). If we define
(and hope to calculate)

s2
n = E

[
‖Xn+1 −Xn‖2

]
,

then E
[
‖Xn+1 −Xn‖

]
< sn, so (5) holds if

∞∑
n=1

sn <∞ . (6)

1.4. The integral as a function of X: We apply the above criteria to showing
that the limit (2) exists for (almost) any Brownian motion path, X. Pointwise
convergence does two things for us. First, it shows that Yg is a function of X,
i.e., a random variable defined on the probability space of Brownian motion
paths. Second, it shows that shows that if we use the approximation (2) on the
computer, we will get an approximation to the right Yg(X), not just a random
variable with (approximately) the right distribution. Whether that is important
is a subject of heated debate, with me heatedly on one of the sides. We will
see that it is much easier to compare Y (n)

g with Y
(2n)
g than with Y

(n+1)
g . To

translate from our situation to the abstract, the abstract Xn will be our Y (2L)
g ,

the abstract n our L, and the abstract ω our X. That is, we seek to show that
the limit

lim
L→∞

Y (2L)
g (X) = Yg(X)

exists for (almost) every Brownian motion path, X. We will do this by calcu-
lating (bounding would be a more apt term) E[(Y (2n)

g − Y (n)
g )2] with n = 2L.

1.5. Comparing the ∆t and ∆t/2 approximations: (See Assignment 6,
question 2 for a slightly different version of this notation). We will fix g and stop
writing it. We have Y (n) based on ∆t = T/n and Y (2n) based on ∆t/2 = T/(2n).
We take tk = k∆t, which is appropriate for Y (n). The contribution to Y (n) from
the interval (tk, tk+1) is g(tk)(Xtk+1 −Xtk). For Y (2n), the interval (tk, tk+1) is
divided into two subintervals (tk, tk+1/2) and (tk+1/2, tk+1), using the notation
tk+1/2 = tk + ∆t/2 = (k + 1/2)∆t. The the contribution to Y (2n) from these
two intervals added is

g(tk)(Xtk+1/2 −Xtk) + g(tk+1/2)(Xtk+1 −Xtk+1/2) .
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Define ∆Yk to be the difference between the single Y (n) contribution and the
two Y (2n) contributions from the interval (tk, tk+1), so that Y (2n) − Y (n) =∑n−1
k=0 ∆Yk. A calculation gives

∆Yk = (g(tk+1)− g(tk+1/2))(Xtk+1 −Xtk+1/2) .

Only the X values are random, and increments Xtk+1 − Xtk+1/2 from distinct
intervals are independent. Therefore

E
[
(Y (2n) − Y (n))2

]
=
n−1∑
k=0

E[∆Y 2
k ] =

n−1∑
k=0

∆g2
k∆t/2 ,

where we have used the notation ∆gk = g(tk+1) − g(tk+1/2) and the fact that
E[(Xtk+1 −Xtk+1/2)2] = ∆t/2.

Now suppose that |g′(t)| ≤ r for all t. Then ∆gk ≤ r∆t
2 (an interval of length

∆t
2 ) so

E
[
(Y (2n) − Y (n))2

]
≤ nr

2∆t2

4
∆t
2
.

Simplifying using the relationship n∆t = T gives

E
[
(Y (2n) − Y (n))2

]
≤ T r

2∆t2

8
.

Finally, take n to be of the form 2L, write YL = Y (2L), and see that we have
shown s2

L ≤ Const · ∆t2, so sL ≤ Const · 2−L, and the criterion (6) is easily
satisfied.

1.6. Unanswered theoretical questions: Here are some questions that would
be taken up in a more theoretical course and their answers, without proof. Q1:
This defines Yg only for functions g(t) that are differentiable. What about other
functions? A1: Because E[Y 2

g ] =
∫ T

0
g(t)2dt, we can “extend” the mapping

g 7→ Yg to any g with
∫
g2 <∞, as we do for the Fourier transform. Q2: What

happens if we let n → ∞ but not by powers of 2? A2: This can be done in
at least two ways, eigher using a more sophisticated argument and higher than
second order moments, or by using a uniqueness theorem for the limit. Even
without this, we met our primary goal of showing that Yg is a well defined
function of X.

1.7. White noise: White noise is something of an idealization, like the
δ−function. Imagine a function, W (t) that is gaussian with mean zero and
has W (t) independent of W (s) for t 6= s. Also imagine that the strength of
the noise is independent of time. This is a common model for fluctuations.
For example, in modeling phone calls, we may think that the rate of new calls
being initiated fluctuates from its mean but that fluctuations at different times
are independent. Suppose we try to integrate white noise over intervals of
time: Y[a,b] =

∫ b
a
W (t)dt. We can determine how the variance σ2

[a,b] = E[Y 2
[a,b]]
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depends on the interval by noting that Y variables for disjoint intervals should
be independent. In particular, if a < b < c we have Y[a,c] = Y[a,b] + Y[b,c], so
σ2

[a,c] = σ2
[a,b] + σ2

[b,c]. The only this can happen, and have, for any offset, d,
σ2

[a,b] = σ2
[a+d,b+d] (homogeneous in time) is for σ2

[a,b] = Const · (b − a). The
“standard” white noise has σ2

[a,b] = b− a.

1.8. White noise is not a function: White noise is too rough to be a function,
even a random function, in the usual sense. To see this, consider an interval
(0, ε). Since

∫ ε
0
W (t)dt has variance ε, it’s standard deviation, which is the order

of magnitude of a typical Y[0,ε], is
√
ε. In order to have

∫ ε
0
W (t)dt ∼

√
ε, we

must have W (t) ∼ 1/
√
ε in at least over a reasonable fraction of the interval.

Letting ε→ 0, we see that W (t) should have infinite values almost everywhere,
not much of a function. Just as the δ−function is defined in an abstract way as
a measure, there are abstract definitions that allow us to make sense of white
noise.

Another way to see this is to try to define YT =
∫ T

0
W (t)2dt. Since we

already think white noise paths are discontinuous, it is natural to try to define
the Riemann sum using averages over small intervals rather than values W (tk).
We call the averages

Wk,n =
1

∆t

∫ tk+1

tk

W (t)dt .

The approximation to YY is

Y
(n)
T = ∆t

n−1∑
k=0

W 2
k,n .

The random variables Wk,n are independent gaussians with mean zero and vari-
ance 1

∆t2 ∆t = 1
∆t . Therefore the W 2

k,n are independent with mean 1
∆t and

variance 2
∆t2 (as the reader should verify). Therefore, Y (n)

T has mean T/∆t and
standard deviation

√
2T/∆t. Clearly, as n → ∞, Y (n)

T → ∞. In other words,∫ T
0
W (t)2dt =∞ by the most reasonable definition.

1.9. White noise and Brownian motion: The integrals Y[a,b] of white noise
have the same statistical properties as the increments of Brownian motion. The
joint distribution of Y[a1,b1], . . ., Y[an,bn] is the same as the joint distribution
of the increments Xb1 − Xa1 , . . ., Xbn − Xan (assuming, though this is not
necessary, that a1 ≤ b1 ≤ a2 · · · ≤ bn): both are multivariate normal with zero
covariances and variances bk − ak. If W (t) were a function, this would lead us
to write the three relationships

Xt =
∫ t

0

W (s)ds ,
dXt

dt
= W (t) , dXt = W (t)dt . (7)

Any of these may be taken as the definition of white noise. This is probably
the main reason most people (who are interested) are interested in Brownian
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motion, that it gives a mathematically rigorous and systematic way to make
sense of white noise.

1.10. Correlations of integrals with respect to Brownian motion: It seems
clear that two integrals with respect to Brownian motion should be jointly gaus-
sian with some covariance we can calculate. In fact, if Yf =

∫ T
0
f(t)dXt and

Yg =
∫ T

0
g(t)dXt, then the approximations Y (n)

f and Y
(n)
g are jointly normal

and have covariance
∑n−1
k=0 f(tk)g(tk)∆t. Taking the limit ∆t→ 0 gives

cov(Yf , Yg) =
∫ T

t=0

f(t)g(t)dt . (8)

1.11. δ correlated white noise: The correlation formula (8) has an interpre-
tation used by 90% of the interested world, not including most mathematicians.
If we write Yg =

∫ T
s=0

g(s)dXs and formally interchange the order of integration,
we get, since dXt and dXs are the only random variables,

E[YfYg] = E

[∫ T

t=0

f(t)dXt

∫ T

s=0

g(s)dXs

]

=
∫
t∈[0,T ]

∫
s∈[0,T ]

f(t)g(s)E[dXtdXs] .

We get (8) with the rule

E[dXtdXs] = δ(t− s)dt . (9)

This is the first instance of the informal Ito rule dX2 = dt. It is equivalent
to (7) with the rule E[W (t)W (s)] = δ(t − s), which is another indication that
white noise is not a normal function. If we write W (t)dt = dXt to write Yf =∫
f(t)W (t)dt, the formula (??) follows.

A useful approximation to white noise with a time step ∆t is

W (∆t)(t) =
∑
k

Zk1Ik(t) (10)

where Ik is the interval [tk, tk+1] and the Zk are independent gaussians with the
proper variance var(Zk) = 1

∆t . For example, this gives∫ T

0

f(t)W (∆t)dt =
∑
k

∫
Ik

f(t)dtZk ,

which is a random variable practically identical to the approximation (2). The
difference is that ∆tf(tk) is replaced by

∫
Ik
f(t)dt = f(tk)∆t+ o(∆t). We iden-

tifly the random variables ∆Xk and ∆tZk because they are both multivariate
normal and have the same mean (E[] = 0), variance, and covariances.
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2 Ito Integration

2.1. Forward dXt: We want to define stochastic integrals such as

YT =
∫ T

0

V (Xt)dXt . (11)

The Ito convention is that E[dXt | Ft] = 0. When we make ∆t = T/n approxi-
mations to (11), we always do it in a way that makes the anologue of dXt have
conditional expectation zero. For example, we might use

Y
(n)
T =

n−1∑
k=0

V (Xtk)(Xtk+1 −Xtk) . (12)

The specific choice ∆Xk = Xtk+1 − Xtk gives E[∆Xk | Ftk ] = 0, which is in
keeping with the Ito convention. We will soon show that the limit Y (n)

T (X) →
YT (X) exists. This limit is the Ito integral.

2.2. Example 1: This example illustrates the convergence of the approxima-
tions, the way in which the Ito integral differs from an ordinary integral, and
the fact that other approximations of dXt lead to different limits. Take

YT =
∫ T

0

XtdXt ,

and use the approximation

Y
(n)
t =

n−1∑
k=0

Xtk(Xtk+1 −Xtk) .

The trick (see any book on this) is to write

Xtk =
1
2

(Xtk+1 +Xtk)− 1
2

(Xtk+1 −Xtk) .

Now,
(Xtk+1 +Xtk)(Xtk+1 −Xtk) = X2

tk+1
+X2

tk
,

so, using tn = T and X0 = 0,

n−1∑
k=0

Xtk(Xtk+1 −Xtk) =
1
2

n−1∑
k=0

(
X2
tk+1
−X2

tk

)
+

1
2

n−1∑
k=0

(
Xtk+1 −Xtk

)2
=

1
2
X2
T +

1
2

n−1∑
k=0

(
Xtk+1 −Xtk

)2
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The second term on the right is the sum of a large number of independent terms
with the same distribution, and mean 1

2E[∆X2
k ] = ∆t

2 . Thus, the second term
is approximately n∆t

2 = T
2 . Letting ∆t→ 0, we get∫ T

0

XtdXt =
1
2
X2
t −

1
2
T .

This is one of the martingales we saw earlier. The Ito integral (11) always gives
a martingale, as we will see.

2.3. Other definitions of the stochastic integral give different answers: A sen-
sible person might suggest other approximations to (11). With Ik = [tk, tk+1],
we approximated

∫
Ik
V (Xt)dXt by V (Xtk)(Xtk+1 −Xtk), which seems like the

rectangle rule for ordinary integration. What would happen if we try the trape-
zoid rule,

(Wrong!)
∫
Ik

V (Xt)dXt ≈
1
2

[V (Xtk) + V (Xtk+1)](Xtk+1 −Xtk) ?

The reader should check that in the example V (x) = x above this would give

(Wrong!)
∫ T

0

XtdXt =
1
2
X2
t .

Also, if Xt were a differentiable function of t, with derivative dXt
dt = W (t), we

could write

(Wrong!)
∫ T

0

XtdXt =
∫ T

0

Xt
dXt

dt
dt =

1
2

∫ T

0

dX2
t

dt
dt = X2

T /2 .

From this it seems that the Ito calculus is different from ordinary calculus be-
cause the function Xt is not differentiable in the ordinary sense. The derivative,
white noise, is not a function in the ordinary sense.

2.4. Convergence and existance of the integral (11): We show that the ap-
proximation (12) converges to something as ∆t→ 0 (really ∆t = T/2k, k →∞),
assuming that V is “Lipschitz continuous”: |V (x)− V (x′)| ≤ C |x− x′|. For ex-
ample, V (x) would be Lipschitz continuous if V ′ were a bounded function. The
convergence is again “pointwise”; the event that the approximations do not con-
verge has probability zero. As in paragraph 1.5, we compare the contributions
from interval Ik = [k∆t, (k + 1)∆t] when we have ∆t, corresponding to n = 2L

subintervals, and ∆t/2 corresponding to 2n = 2L+1 intervals. For ∆t there is
just ∫

t∈Ik
V (Xt)dXt ≈ V (Xk)(Xk+1 −Xk) .

We use the shorthand Xk for Xtk , and below, Xk+1/2 for X(k+1/2∆t. For ∆t/2
there are two contributions:∫

t∈Ij
V (Xt)dXt ≈ V (Xk)(Xk+1/2 −Xk) + V (Xk+1/2)(Xk+1 −Xk+1/2) .
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The difference between these is

Dj = V (Xk+1/2 − V (Xk))(Xk+1 −Xk+1/2) .

Therefore, using the old double summation trick,

s2
L = E

[(
Y

(2n)
T − Y (n)

T

)2
]

= E

(n−1∑
k=0

Dk

)2


=
n−1∑
j=0

n−1∑
k=0

E[DjDk] .

The terms with j 6= k are zero. Suppose, for example, that k > j. Then
E[(Xk+1 − Xk+1/2) | Fk+1/2] = 0, so E[Dj , Dk] = 0. When V is Lipschitz
continuous,

E[D2
k] ≤ C2E[(Xk+1 −Xk+1/2)2(Xk+1/2 −Xk)2] = C2∆t2/2.

since there are n = 2L terms, this gives s2
L ≤ n∆t ≤ C2∆t/4 = C2T 22−L/4, so∑

L sL <∞, which implies pointwise convergence.

2.5. How continuous are Brownian motion paths: We know that Brownian
motion paths are continuous but not differentiable. The total variation, the total
distance travelled (not the net distance |Xt′ −Xt|), is infinite for any interval.
To understand the accuracy and convergence of approximations like (12), we
would like some positive quantitative measure of continuity of Brwonian motion
paths. One positive statement is “Hölder continuity”. The function f(t) is
Hölder continuous with exponent α if there is some C so that

|f(t′)− f(t)| ≤ C |t′ − t|α ,

for any t and t′. Only exponents between larger than zero and not more than
one are relevent. Exponent α = 1 is for Lipschitz continuous functions. A larger
α means a more regular function. Besides Brownian motion, fractals such as
the Koch snowflake and the space filling curve are other examples of natural
Hölder continuous functions. The function f(t) = −1/ log(t) is continuous at
t = 0 but not Hölder continuous there. The exponent α = 1/2 seems natural for
Brownian motion because (see the discussion of total variation and quadratic
variation)

E[|Xt′ −Xt|] ∼ |t′ − t|
1/2

.

Actually, this is just slightly optimistic. It is possible to prove, using the Brow-
nian bridge construction (upcoming) that Brownian motion paths are Hölder
continuous with any positive exponent less than 1/2:

9



Lemma: For any positive α < 1/2, every T > 0, and (almost) every Brownian
motion path Xt, there is a CX so that

|Xt′ −Xt| ≤ CX |t′ − t|
α
.

for all t ≤ T and t′ ≤ T . Furthermore, E[CX ] <∞.
Remark: The proof of this lemma is really a calculation of (an upper bound
for) E[CX ].

2.6. Ito integration with nonanticipating functions: Ito wants to integrate
more general functions than V (Xt) with respect to Brownian motion. For ex-
ample, he might want to calculate∫ T

0

(
max
s<t

Xs

)
dXt ,

or the iterated integral ∫ T

0

(∫ t

0

X2
sdXs

)
dXt .

Therefore, we consider the more general Ito integral

YT =
∫ T

0

VtdXt , (13)

where, for each t, Vt is measurable with respect to Ft. Such functions are
called “adapted” or “nonanticipating” or “causal” (possible subtle distinctions
between these notions go unmentioned here). Nonanticipating functions are
important in studying stochastic decision problems; we are supposed to make
decisions at time t based on information in Ft. Martha Stewart can explain the
consequences of violating this rule, or appearing to do so. The examples above
have

Vt = max
s<t

Xs

and

Vt =
∫ t

0

X2
sdXs

respectively, both measurable in Ft. Of course, Vt is a function of X also (ω in
the abstract description), but as usual we do not indicate that explicitly.

We can show that integrals as general as (13) exist by showing that approx-
imations

Y
(n)
T =

n−1∑
j=0

Vtj (Xj+1 −Xj) (14)

converge as ∆t→ 0. The argument in paragraph 2.4 works fine for this purpose
if you assume that Vt is a Hölder continuous function of t (with E[C2] < ∞,
C being the Hölder exponent). Because we might want Vt = Xt (the case of
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paragraph 2.4), we should allow Hölder exponents less than 1/2. As before, the
difference between the ∆t and ∆t/2 approximations is

Y
(2n)
T − Y (n)

T =
n−1∑
k=0

Dk ,

with (in the same shorthand notation)

Dk =
(
Vk+1/2 − Vk

) (
Xk+1 −Xk+1/2

)
.

Again, because V is nonanticipating, E[DiDj ] = 0 if i 6= j. Also,

E[D2
k] ≤ E[C2](∆t/2)2α∆t/2 ,

which proves convergence as before.

2.7. Further extension, the Ito isometry: A mapping is an isometry if
distances are the same before and after the mapping is applied. For example,
rigid rotations of three dimensional space are isometries; the distance between
a pair of points is the same before and after the transformatin is applied. The
formula (3) is the first shows that the mapping g 7→ Yg is an isometry in the
sense that if the distance between g1 and g2 is

‖g1 − g2‖2 =
∫ T

0

(g1(t)− g2(t))2dt ,

and the distance between random variables (functions of a random variable)
Y1(ω) and Y2(ω) is

‖Y1 − Y2‖2 = E[(Y1 − Y2)2] =
∫

Ω

(Y1(ω)− Y2(ω))2dP (ω) ,

then we have the isometry (which is just a restatement of (3))

‖Yg1 − Yg2‖
2 = ‖g1 − g2‖2 .

Since the mapping is linear, this is the same (just take g = g1 − g2) as showing
that

‖Yg‖2 = ‖g‖2 .

Ito showed that his stochastic integral is an isometry in the same sense. The
left side is the same, and the right side is related to

∫ T
0
V 2
t dt. The difference

is that the latter integral is random. The final Ito isometry is, using Yt(V ) to
indicate that YT depends on the function V :

E
[(
Yt(V )

)2] =
∫ T

0

E[V 2
t ]dt . (15)

It is easy to verify this identity using the approximations (14) as usual. The
approximations (14) might converge to something as ∆t → 0 even when Vt is
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not nonanticipatint (i.e. anticipating?), but it is very unlikely that the limit
would satisfy the Ito isometry.

The isometry formula is useful in practical calculations (see assignment 7).
It also has several applications in the theory. One theoretical application is in
showing that the mapping Vt 7→ YT (V ) may be defined for any nonanticipating
V so that the right side of (15) is finite. For any such V and any ε, we must
find a V (ε) so that V (ε) is Hölder continuous in the sense we need, and so that∫ T

0
E[(Vt − V (ε)

t )2] ≤ ε. The Ito isometry formula then shows that, if YT were
to exist, E[(YT − Y (ε))2] ≤ ε, where Y (ε)

T is the Ito integral of V (ε). From this,
it is possible to show that the Y (ε)

T do have a limit as ε→ 0 (in a certain sense),
which is the desired YT .

2.8. Martingale property: As a function of T , the Ito integral is a martingale.
We can see this from the approximations (12). If we fix ∆t and let T vary, it is
clear that Y (n)

T is a martingale, since each of the increments, Vtn
(
Xtn+1 −Xtn

)
,

has mean zero when projected onto funcions measurable in Ftn . Actually, I’m
cheating a bit here since ∆t was supposed to depend on T , but hopefully the idea
is clear. The Ito isometry formula is an expression of the martingale property. If
Zn is a discrete time martingale with “martingale differences” Wn = Zn−Zn−1,
then (with the convention that W0 = Z0)

Zn =
n∑
k=0

Wk . (16)

The martingale property is that E[Wk | Fj ] = 0 if k > j. Therefore, E[WkWj ] =
0 for k 6= j (we may as well suppose k > j, why?). Thus E[Z2

n] =
∑n
k=0E[W 2

k ].
In the Ito integral may be thought of as a continuous time version of (16), with
VtdXt playing the role of Wk, and the integral playing the role of the sum.
Corresponding to E[WkWj ] = 0, we have E[VsdXsVtdXt] = δ(t − s)E[V 2

t ],
which leads to the Ito isometry formula.
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