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1 Brownian Motion

Brownian motion is the simplest of the stochastic processes called diffusion
processes. It is helpful to see many of the properties of general diffusions appear
explicitly in Brownian motion. In fact, all the other diffusion processes may be
described in terms of Brownian motion. Furthermore, Brownian motion arises
as a limit or many discrete stochastic processes in much the same way that
Gaussian random variables appear as a limit of other random variables throught
the central limit theorem. Finally, the solutions to many other mathematical
problems, particilarly various common partial differential equations, may be
expressed in terms of Brownian motion. For all these reasons, Brownian motion
is a central object to study.

1.1. Path space: I will call brownian motion paths W (t) or Wt. In other
places people might use Bt, bt, Z(t), Zt, etc. The probability space ω will be
the space of continuous functions of t for t ≥ 0 so that W0 = 0. Later, we might
consider other starting positions, but that will be explicitly stated when we get
there. We might consider finite time or infinite time. That is, we might consider
functions Wt, for 0 ≤ t ≤ T or for all t ≥ 0. The sigma−algebra will be the
algebra generated by all the “coordinate” functions X(W ) = Xt for various t
values. Since this is an infinite collection of functions, what we really mean
is to consider first finite collections, t1 < · · · < tn, and take the σ− algebra
generated by all these. This complex definition of F leads to lots of technicality
in complete rigorous discussions of Brownian motion. Also important are the
σ−algebras, Ft with information up to time t. These are generated by the
coordinate functions for t1 < · · · < tn ≤ t.

1.2. Increment probabilities: The probability measure for Brownian motion,
called Wiener measure, is specified by giving the probabilities of generating
events. These generating events are events generated by finitely many coor-
dinate functions. Let t0 < t1 < · · · < tn. The Brownian motion increments
(sometimes called “shocks” by finance people) are Xk = Wtk+1 −Wtk . Wt is
a Brownian motion if the increments form a multivariate Gaussian, distinct
increments are independent, E[Xk] = 0, and

var[Xk] = E[X2
k ] = E[(Wtk+1 −Wtk)2] = tk+1 − tk . (1)

If (??) holds for every n ≥ 2 and every set of times (increasing, of course), then
the probability measure is Wiener measure.

1.3. Consistency: There is some technical mathematics between the claim
of the above paragraph and it’s proof. A first step might be to see that all
the different probabilities for different n and tk are consistent with each other.
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There is something real here; if var(Xk) = (tk+1 − tk)2, the probabilities are
inconsistent (see below).

Suppose m < n and we have two increasing sequences of times t1 < t2 <
· · · < tn and t̃n < · · · t̃m. Suppose that the t̃k are a subset of the tj . This means
that the random variables Wt̃k

are a subset of the random variables Wtj . Call
the joint probability density for the Wtj u(wt1 , . . . , wtn), and let ũ(wt̃1 , . . . , wt̃m)
be the density for the Wt̃k

. We should be able to get the probability density
ũ for the subset of the variables from the larger density u by integrating over
the variables not present. That is, ũ should be the marginal density for the t̃k
derived from the the density u.

For example, suppose n = 3, m = 2, t1 < t2 < t3 and t̃1 = t1 and t̃2 = t3.
That is, the t̃k leave out the middle t. From (??), we find that the increments
X1 = Wt2 − Wt1 and X2 = Wt3 − Wt2 are jointly gaussian with zero mean,
correlation zero, and variance σ2

1 = t2 − t1 and σ2
2 = t3 − t2 respectively. For

the t̃k we get that the increment X̃1 = Wt3 −Wt1 is gaussian with zero mean
and variance σ̃2

1 = t3 − t1. On the other hand, X̃1 = X1 +X2 (check this from
their definitions), so the distribution of the random variable X̃1 is determined
by those of X1 and X2. Are these two definitions of X̃1 consistent? Yes. The
sum of independent normals X1 and X2 is normal with variance σ2

1 + σ2
2 . This

shows that leaving out a single intermediate time gives consistent probability
distributions. If we leave out times one at a time, we get the overall consistency
statement. You should check that if the variance of Xk is not a linear function
of tk+1 − tk, the distributions are not consistent.
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1.4. Rough paths, total variation: The above picture shows 5 Brownian
motion paths. They are random and differ in gross features (some go up, others
go down), but the fine scale structure of the paths is the same. For one thing,
each of the paths, and any part of any path, has infinite “variation” (more
technically, “total variation”). Consider times T1 < T2, choose a large number,
n, and divide the time interval [T1, T2] into n − 1 equal side small subintervals
tk, tk+1, where tk = T1 + (k− 1)∆t, with ∆t = (T2 − T1)/(n− 1). The quantity

V =
n−1∑
k=1

∣∣Wtk+1 −Wtk

∣∣ (2)

is the ∆t variation of W between T1 and T2. By the independent increments
property, the terms on the right side of (2) are independent. By (1), they have
the same distribution. We estimate the sum of n− 1 iid random variables using
the Central Limit Theorem. The expected value is

E[V ] = (n− 1) · E[|X1|]

where X1 ∼ N (0,∆t). Therefore

E[|X1|] =
1

2π∆t

∫ ∞
x=−∞

|x| e−x
2/(2∆t)dx
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= 2 · 1
2π∆t

∫ ∞
x=0

xe−x
2/(2∆t)dx

= C
√

∆t ,

where C =
√

2/π. Substituting the definition of ∆t, this shows that E[V ] =
const

√
n− 1, with const = (2(T2 − T1)/π)1/2. As you take more and more

intervals (n→∞), the total movement of W between T1 and T2 goes to infinity.
By contrast, suppose Ut is a differentiable function of time. Then

|Utk+1 − Utk | ≈
∣∣∣∣dUtdt

∣∣∣∣ (tk+1 − tk) ,

so ∑
k

|Utk+1 − Utk | →
∫ T2

T1

∣∣∣∣dUdt
∣∣∣∣ dt <∞ as n→∞.

The variabion of a differentiable function has a limit, the “total variation” as
the partition tk gets finer. For Brownian motion, the finer you look, the more
variation you see. Brownian motion paths are not differentiable in the ordinary
sense of calculus. The Ito calculus is called for instead.

1.5. Dynamic trading: The infinite total variation of Brownian motion has
a consequence for dynamic trading strategies. Some of the simplest dynamic
trading strategies, Black-Scholes hedging, and Merton half stock/half cash trad-
ing, call for trades that are proportional to the change in the stock price. If the
stock price is a diffusion process and there are transaction costs proportional
to the size of the trade, then the total transaction costs will either be infinite
(in the idealized continuous trading limit) or very large (if we trade as often as
possible). It turns out that dynamic trading strategies that take trading costs
into account can approach the idealized zero cost strategies when trading costs
are small. Next term you will learn how this is done.

1.6. Quadratic variation: The quadratic variation for the partition tk as
above is

Q(T1, T2, n) =
n−1∑
k=1

(
Wtk+1 −Wtk

)2
. (3)

This sum takes the squares of the increments, Xk = Wtk+1 −Wtk rather than
the absolute values. For continuous paths, small ∆t = (T2− T1)/(n− 1) should
imply small Xk. Therefore the quadratic variation should be smaller than the
total variation. In fact, for a differentiable function, Q → 0 as n → ∞. For
Brownian motion, the quadratic variation terms are just small enough for the
sum not to go to zero or infinity as n → ∞. In fact, the basic formula (1)
implies that

E[Q(T2, T1, n)] =
∑
k

(tk+1 − tk) = T2 − T1 , (4)
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for any partition. Since the sum in (3) has a large number of iid terms for
large n, the Central Limit Theorem suggests that the sum should be close to its
expected value. Thus, we have the quadratic variation as the limit

Q(T1, T2) = lim
n→∞

Q(T1, T2, n) = T2 − T1 .

For other diffusion processes, the quadratic variation limit exists but it’s value
depends on the path. The quadratic variation is an important ingredient in the
Ito calculus.

1.7. Trading volatility: The quadratic variation of a stock price (or a similar
quantity) is called it’s “realized volatility”. The fact that it is possible to buy
and sell realized volatility says that the (geometric) Brownian motion model
of stock price movement is not completely realistic. That model predicts that
realized volatility is a constant, which is nothing to bet on.

1.8. Almost sure convergence: An event, A, is called “almost sure” if
P (A) = 1. For example, a probabilist would say that the quadratic variation
formula (4) is true almost surely and might write

Qn → Q as n→∞ a.s. .

It might seem that this should be called “sure” because we have no doubt that
it will happen. The “almost” refers to the fact that (4) is might not be true
for every W ∈ Ω. There are paths, continuous functions Wt, so that the limit
is infinite and others so that the limit is zero (e.g. differentiable paths). In
continuous probability, there are many events that are impossible because they
have probability zero, not because the do not exist.

1.9. Markov property: Brownian motion has the Markov property. This is a
consequence of the independent increments property. For any t, we have the σ−
algebras Ft generated by the Ws for 0 < s ≤ t (representing past and present),
Gt generated by Wt (representing the present), andHt (representing the future).
The Markov property is that for any function F ∈ Ht, E[F | Gt] = E[F | Ft]. A
function measurable with respect to Ht depends on the values Ws for s ≥ t. But
Ws for s ≥ t is determined by Wt and increments X for intervals (tk, tk+1) that
are measurable in Ht and independent of all increments that are Ft measurable.
blabla.

1.10. Conditional probabilities for intermediate times:

1.11. Brownian bridge construction:

1.12. Continuous time stochastic process: The general abstract definition
of a continuous time stochastic process is just a probability space, Ω, and, for
each t > 0, a σ−algebra Ft. These algebras should be nested (corresponding
to increase of information) Ft1 ⊆ Ft2 if t1 ≤ t2. There should also be a family
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of random variables Yt(ω), with Yt measurable in Ft (i.e. having a value known
at time t). This explains why probabilists often write Wt instead of W (t). For
each t, we think of Wt as a function of ω with t simply being a parameter. The
Brownian motion has the property that, for every ω (not almost every), the
map t → Wt(ω) is a continuous function of t. Other stochastic processes, such
as the Poisson jump process, do not have continuous sample paths.

1.13. Continuous time martingales: A stochastic process Mt (with Ω and
the Ft) is a martingale if E[Ms | Ft] = Mt for s > t. Brownian motion forms
the first example of a continuous time martingale. Another famous martingale
related to Brownian motion is Mt = W 2

t − t (the reader should check this). For
any random variable, Y , the conditional expectations Yt = E[Y | Ft] form a
martingale. The Ito calculus is based on the idea that a stochastic integral with
respect to W should produce a martingale.

2 Brownian motion and the heat equation

We saw for Markov chains that actual calculations of probabilities and expec-
tation values often make use of forward and backward equations, which we
call evolution equations, for probabilities (here, probability densities) and con-
ditional probabilities. For Brownian motion, both the forward and backward
equations are “the” heat equation, though the backward equation is often called
the “backward heat equation”. We will also find heat equations with bound-
ary conditions that allow us to compute hitting time probability densities and
expectations that involve hitting times.

2.1. Forward equation for the probability density: For now we will write
Xt for Brownian motion. A Brownian motion starting at X0 = 0 will have
probability density at time t that is N (0, t). We denote this density by

g(x, t) =
1√
2π
e−x

2/2t . (5)

Directly calculating partial derivatives, we can verify that

∂tg =
1
2
∂2
xgl. (6)

This g will play a role below as the ”transition density” for Brownian motion,
which is more general than just the density for Xt. For example, we could also
consider a more general initial density X0 ∼ u0(x), and independent Gaussian
increments as before. (We write Y ∼ v(y) to indicate that v is the probability
density for the random variable Y , and sometimes also Y1 ∼ Y2 to mean that
Y1 and Y2 have the same density.) Then the increment Xt −X0 will be N (0, t)
and independent of X0. That is, Xt is the sum of independent random variables
X0, with density u0, and Xt −X0, with density g(·, t). Therefore, the density
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for Xt is

u(x, t) =
∫ ∞
y=−∞

g(x− y, t)u0(y)dy , (7)

Again, direct calculation using (5) shows taht u satisfies

∂tu =
1
2
∂2
xu . (8)

This is the “heat equation”, also called “diffusion equation”. The equation is
used in two ways. First, we can compute probabilities by finding the solution
to the partial differential equation. Also, we may be able to find solutions to
the partial differential equation if there is an independent way to calculate the
probability density.

2.2. Heat equation via Taylor series: There is another way to see that the
Xt probability density u satisfies the heat equation (8) that proceeds directly
from (5). This technique has the advantage that we do not have to know the
equation in advance. We suppose only that u is a smooth function of x and t
and derive the equation by Taylor series calculations. The idea applies in more
general situations. It is one approach to the Ito calculus.

The Brownian motion Xt ∼ u(x, t) has the property that its increment in a
small time interval ∆t is Y = Xt+∆t −Xt ∼ N (0,∆t), independent of Xt. As
above, this means that Xt+∆t = Xt + Y has probability density u(x, t + ∆t)
that satisfies

u(x, t+ ∆t) =
∫
g(x− y,∆t)u(y, t)dy , (9)

where g is still given by (5). Now, for small ∆t, the integrand on the right side of
(9) is significantly different from zero only when x− y is small (not much larger
than the order of

√
∆t). If u is a smooth function of x, most of the integral will

be determined by values of u for y near x. This motivates us to approximate
u(y) as a Taylor series about x:

u(y) = u(x) + ∂xu(x) · (y − x) +
1
2
∂2
xu(x) · (y − x)2 +O(|x− y|3)l; .

We integrate the right side of (9) with this expansion, remembering that
∫
g(x−

y,∆t)(x− y)2dy = ∆t, that being the variance of the ∆t increment in X. The
result is (You can verify that

∫
g(y,∆t) |y|3 dy = O(∆t3/2.):∫

g(x− y,∆t)u(y, t)dy = u(x, t) + 0 + ∆t
1
2
∂2
xu(x, t) +O(∆t3/2) .

Of course, we also have

u(x, t∆t) = u(x, t) + ∆t∂tu(x, t) +O(∆t2) .

Using these series for the left and right sides of (9) gives

u(x, t) + ∆t∂tu(x, t) +O(∆t2) = u(x, t) + ∆t
1
2
∂2
xu(x, t) +O(∆t3/2) .
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We cancel the u(x, t) then divide by ∆t and let ∆t → 0, and we are left with
(8).

2.3. The initial value problem: The heat equation (8) is the Brownian mo-
tion anologue of the forward equation for Markov chains. It is often called the
forward equation, often to distinguish it from the backward equation discussed
below. If we know the time 0 density u(x, 0) = u0(x) and the evolution equa-
tion (8), the values of u(x, t) are completely and uniquely determined (ignoring
mathematical technicalities that would be unlikely to trouble an applied per-
son). The task of finding u(x, t) for t > 0 from u0(x) and (8) is called the “initial
value problem”, with u0(x) being the “initial value” (or “values”??). This ini-
tial value problem is “well posed”, which means that the solution, u(x, t), exists
and depends continuously on the initial data, u0. If you want a proof that the
solution exists, just use the integral formula for the solution (7). Given u0, the
integral (7) exists, satisfies the heat equation, and is a continuous function of
u0. The proof that u is unique is more technical (partly because it rests on more
technical assumptions).

2.4. Ill posed problems: In some situations, the problem of finding a function
u from a partial differential equation and other data may be “ill posed”, useless
for practical purposes. A problem is ill posed if it is not well posed. This means
either that the solution does not exist, or that it does not depend continuously
on the data, or that it is not unique. For example, if I try to find u(x, t) for
positive t knowing only u0(x) for x > 0, I must fail. A mathematician would say
that the solution, while it exists, is not unique, there being many different ways
to give u0(x) for x > 0, each leading to a different u. A more subtle situation
arises, for example, if we give u(x, T ) for all x and wish to determine u(x, t)
for 0 ≤ t < T . For example, if u(x, T ) = 1[0,1](x), there is no solution (trust
me). Even if there is a solution, for example given by (7), is does not depend
continuously on the values of u(x, T ) for T > t (trust me).

The heat equation (8) relates values of u at one time to values at another
time. However, it is “well posed” only for determining u at future times from u
at earlier times. This “forward equation” is well posed only for moving forward
in time.

2.5. Conditional expectations: We saw already for Markov chains that
certain conditional expected values can be calculated by working backwards in
time with the backward equation. The Brownian motion version of this uses
the conditional expectation

f(x, t) = E[V (XT ) | Xt = x] . (10)

The “modern” formulation of this gives ft = E[V (Xt) | Ft], which is, as has
been repeated, a function of Xt = x only. Of course, these definitions mean
the same thing. The definition is also sometimes written as f(x, t) = Ex,t[Xt].
This is in the spirit of writing Eα[] for expectation with respect to the given
probability measure Pα. Here, the probability measure Px,t is Brownian motion
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starting from x at time t, which is defined by the densities of increments for
times larger than t as before.

2.6. Backward equation by direct verification: The expectation (10) depends
on the increment XT−Xt, which isN (0, T−t) and independent of Xt. Thus, the
conditional density of XT given that Xt = x is (as a function of y) g(y−x, T−t).
Writing the expectation f(x, t) as an integral, we get

f(x, t) =
∫ ∞
−∞

g(x− y, T − t)V (y)dy . (11)

Since this depends on x and t only through g, we can again verify through
explicit calculation that

∂tf +
1
2
∂2
xf = 0 . (12)

Note that the sign of ∂t here is not what it was in (8), which is because we are
calculating ∂tg(T − t) rather than ∂tg(t). This (12) is the “backward equation”.

2.7. Backward equation by Taylor series: As with the forward equation (8),
we can find the backward equation by Taylor series expansions. Indeed, since
Ft ⊂ Ft+∆t, we have, in “modern” notation,

ft = E[V (XT ) | Ft] = E[E[V (XT ) | Ft+∆t] | Ft] = E[f(Xt∆t | Ft] .

Using the probability density for the increment Xt+∆t−Xt, this gives the inte-
gral relation

ft(x, t) =
∫ ∞
y=−∞

g(x− y,∆t)ft+∆t(y)dy . (13)

Using Taylor series on the right and left (in different ways as above) again leads
to (12).

2.8. The final value problem: We get a well posed problem by giving the
partial differential equation (12) together with the “final values” f(x, T ) = V (x)
(The definition (10) makes this obvious.). The “backwards heat equation enables
us to find values of f at early times from given values at later times. The initial
value problem, finding ft with t > 0 from f0 is not well posed. Although there
may be occaisonal solutions, it is not a useful way to find the general solution,
either because the general solution does not exist or because the solution that
happens to exist does not depend in a continuous way on the values f0.

2.9. Duality: You can check directly the duality property that
∫
f(x, t)u(x, t)dx

is independent of t. As for the Markov chain case, this is a consistency relation
between the forward and backward evolution equations that makes one “dual”
to the other. Also as for Markov chains, the integral is an expression of the
law of total probability, integrating the expected payout starting at x at time t
multiplied by the probability density for being at x at time t. This is E[V (XT )],
and is thus independent of t.
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2.10. The smoothing property, regularity: Solutions of the forward or back-
ward heat equation become smooth functions of x and t even if the initial data
(for the forward equation) or final data (for the backward equation) are not
smooth. For u, this is clear from the integral formula (7). If we differentiate
with respect to x, this derivative passes under the integral and onto the g fac-
tor. This applies also to x or t derivatives of any order, since the corresponding
derivatives of g are still smooth integrable functions of x. The same can be said
for f using (13); as long as t < T , any derivatives of f with respect to x and/or t
are bounded. A function that has all partial derivatives of any order bounded is
called “smooth”. (Warning, this term is not used consistently. Some people say
“smoooth” to mean, for example, merely having derivatives up to second order
bounded.) Solutions of more general forward and backward equations often,
but not always, have the smoothing property.

2.11. Rate of smoothing: Suppose the payout (and final value) function,
V (x), is a discontinuous function such as V (x) = 1x>0(x) (a “digital” option in
finance). For t close to T , f(x, t) will be a differentiable function of x, but the
derivative will be very large in some places. In fact,

max
x
|∂xf(x, t)| ∼ 1√

T − t
.

Higher derivatives of f “explode” faster as t approaches T . If V (x) = x+ (x+

being the “positive part” of x, either x or 0 depending on which is larger), then
the ∂xf is bounded as t approaches T , but the curvature “blows up”. The fact
that derivatives of f blow up at t approaches T makes numerical solution of the
backward equation difficult and inaccurate.

2.12. Diffusion: It sometimes helps the intuition to think of particles diffusing
through some medium, ink particles diffusing through still water, for example.
Then u(x, t) can represent the density of particles about x at time t. If ink
has been diffusing through water for some time, there might be dark regions
with a high density of particles (large u) and lighter regions with smaller u.
This helps us interpret, for example, solutions of the heat equation (8) without
the requirement that

∫
u(x, t)dx = 1. For ink in water, it is a reasonable

approximation to think of each particle performing it’s own Brownian motion
independent of all the others. If the density of particles were too high (e.g.
all particles and no water), we would have to adjust the model. A physical
argument that tiny particles in water should undergo Brownian motion, and
that their density should satisfy the heat equation, was given by the German
phycisist Albert Einstein, and was the basis of his Nobel Prize (relativity and
quantum mechanics seeming too uncertain at the time).

2.13. Heat: Heat also can diffuse through a medium, as happens when we
put a thick metal pan over a flame and wait for the other side to heat up. We
can think of u(x, t) as representing the temperature in a metal at location x at
time t. This helps us interpret solutions of the heat equation (8) when u is not
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necessarily positive. In particular, it helps us imagine the “cancellation” that
can occur when regions of positive and negative u are close to each other. Heat
flows from the high temperature regions to low or negative temperature regions
to create a more uniform equilibrium temperature. A physical argument that
heat (temperature) flowing through a metal should satisfy the heat equation was
given by the French mathematical phycisist, friend of Napoleon, and founder of
Ecole Polytechnique, Joseph Fourier.

2.14. Hitting times: A stopping time, τ , is any time that depends on the
Brownian motion path X so that the event τ ≤ t is measurable with respect to
Ft. This is the same as saying that for each t there is some process that has as
input the values Xs for 0 ≤ s ≤ t and as output a decision τ ≤ t or τ > t. One
kind of stopping time is a hitting time:

τa = min (t | Xt = a) .

More generally (particularly for Brownian motion in more than one dimension)
if A is a closed set, we may consider τA = min(t | Xt ∈ A). It is useful to define
a Brownian motion that stops at time τ : X̃t = Xt if t ≤ τ , X̃t = Xτ if t ≥ τ .

2.15. Probabilities for stopped Brownian motion: Suppose Xt is Brownian
motion starting at X0 = 1 and X̃ is the Brownian motion stopped at time τ0,
the first time Xt = 0. The probability measure, Pt, for X̃t may be written
as the sum of two terms, Pt = P st + P act . (Since X̃t is a single number, the
probability space is Ω = R, and the σ−algebra is the Borel algebra.) The
“singular” part, P st , corresponds to the paths that have been stopped. If p(t) is
the probability that τ ≤ t, then P st = p(t)δ(x), which means that for any Borel
set, A ⊆ R, P st (A) = p(t) if 0 ∈ A and P st (A) = 0 if 0 /∈ A. This δ is called
the “delta function” or “delta mass”; it puts weight one on the point zero and
no weight anywhere else. Probabilists sometimes write δx0 for the measure that
puts weight one on the point x0. Phycisists write δx0(x) = ‘delta(x = x0). The
“absolutely continuous” part, P act , is given by a density, u(x, t). This means
that P act (A) =

∫
A
u(x, t)dx. Because

∫
R
u(x, t)dx = 1− p(t) < 1, u, while being

a density, is not a probability density.
This decomposition of a measure (P ) as a sum of a singular part and ab-

solutely continuous part is a special case of the Radon Nikodym theorem. We
will see the same idea in other contexts later.

2.16. Forward equation for u: The density for the absolutely continuous part,
u(x, t), is the density for paths that have not touched X = a. In the diffusion
interpretation, think of a tiny ink particle diffusing as before but being absorbed
if it ever touches a. It is natural to expect that when x 6= a, the density satisfies
the heat equation (8). u “knows about” the boundary condition because of
the “boundary condition” u(a, t) = 0. This says that the density of particles
approaches zero near the absorbing boundary. By the end of the course, we
will have several ways to prove this. For now, think of a diffusing particle, a
Brownian motion path, as being hyperactive; it moves so fast that it has already
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visited a neighborhood of its current location. In particluar, if Xt is close to a,
then very likely Xs = a for some s < t. Only a small minority of the particles
at x near a, with small density u(x, t)→ 0 as x→ a have not touched a.

2.17. Probability flux: Suppose a Brownian motion starts at a random point
X0 > 0 with probability density u0(x) and we take the absorbing boundary
at a = 0. Clearly, u(x, t) = 0 for x < 0 because a particle cannot cross from
positive to negative without crossing zero, the Brownian motion paths being
continuous. The probability of not being absorbed before time t is given by

1− p(t) =
∫
x>0

u(x, t)dx . (14)

The rate of absorbtion of particles, the rate of decrease of probabiltiy, may be
calculated by using the heat equation and the boundary condition. Differenti-
ating (14) with respect to t and using the heat equation for the right side then
integrating gives

−ṗ(t) =
∫
x>0

∂tu(x, t)dx

=
∫
x>0

1
2
∂2
xu(x, t)dx

ṗ(t) =
1
2
∂xu(x, 0) . (15)

Note that both sides of (15) are positive. The left side because P (τ ≤ t) is an
increasing function of t, the right side because u(0, t) = 0 and u(x, t) > 0 for
x > 0. The identity (15) leads us to interpret the left side as the probability
“flux” (or “density flux if we are thinking of diffusing particles). The rate
at which probability flows (or particles flow) across a fixed point (x = 0) is
proportional to the derivative (the gradient) at that point. In the heat flow
interpretation this says that the rate of heat flow across a point is proportional
to the temperature gradient. This natural idea is called Fick’s law (or possibly
“Fourier’s law”).

2.18. Images and Reflections: We want a function u(x, t) that satisfies the
heat equation when x > 0, the boundary condition u(0, t) = 0, and goes to δx0

as t ↓ 0. The “method of images” is a trick for doing this. We think of δx0 as
a unit “charge” (in the electrical, not financial sense) at x0 and g(x − x0, t) =

1√
2π
e−(x−x0)2/2t as the response to this charge, if there is no absorbing boundary.

For example, think of puting a unit drop of ink at x0 and watching it spread
along the x axis in a “bell shaped” (i.e. gaussian) density distribution. Now
think of adding a negative “image charge” at −x0 so that u0(x) = δx0 − δ−x0

and correspondingly

u(x, t) =
1√
2πt

(
e−(x−x0)/2t − e−(x+x0)/2t

)
. (16)
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This function satisfies the heat equation everywhere, and in particular for x > 0.
It also satisfies the boundary condition u(0, t) = 0. Also, it has the same initial
data as g, as long as x > 0. Therefore, as long as x > 0, the u given by (16)
represents the density of unabsorbed particles in a Brownian motion with ab-
sorption at x = 0. You might want to consider the image charge contribution
in (16), 1√

2π
e−(x−x0)2/2t, as “red ink” (the ink that represents negative quanti-

ties) that also diffuses along the x axis. To get the total density, we subtract
the red ink density from the black ink density. For x = 0, the red and black
densities are the same because the distance to the sources at ±x0 are the same.
When x > 0 the black density is higher so we get a positive u. We can think of
the image point, −x0, as the reflection of the original source point through the
barrier x = 0.

2.19. The reflection principle: The explicit formula (16) allows us to evaluate
p(t), the probability of touching x = 0 by time t starting at X0 = x0. This is

p(t) = 1−
∫
x>0

u(x, t)dx =
∫
x>0

1√
2πt

(
e−(x−x0)/2t − e−(x+x0)/2t

)
dx .

Because
∫∞
−∞

1√
2πt

e−(x−x0)/2tdx = 1, we may write

p(t) =
∫ 0

−∞

1√
2πt

e−(x−x0)/2tdx+
∫ ∞

0

1√
2πt

e−(x+x0)/2tdx .

Of course, the two terms on the right are the same! Therefore

p(t) = 2
∫ 0

−∞

1√
2πt

e−(x−x0)/2tdx .

This formula is a particular case the Kolmogorov reflection principle. It says
that the probability that Xs < 0 for some s ≤ t is (the left side) is exactly
twice the probability that Xt < 0 (the integral on the right). Clearly some of
the particles that cross to the negative side at times s < t will cross back, while
others will not. This formula says that exactly half the particles that touch for
some s ≤ t x = 0 have Xt > 0. Kolmogorov gave a proof of this based on the
Markov property and the symmetry of Brownian motion. Since Xτ = 0 and
the increments of X for s > τ are independent of the increments for s < τ , and
since the increments are symmetric Gaussian random variables, they have the
same chance to be positive Xt > 0 as negative Xt < 0.
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