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1 Continuous probability

This section is a quick and sketchy introduction to the modern terminology of
probability following Kolmogorov in what we call continuous spaces. Although
the modern approach has lots of baggage, it ultimately makes things easier, as
we will begin to see here.

1.1. Continuous spaces I use this to mean probability spaces that are not
countable (discrete). In discrete probability, we first defined P (ω), the proba-
bility of any particular outcome. Then the probability of an event, A was the
sum of the probabilities of the outcomes that make up that event:

P (A) =
∑
ω∈A

P (ω) . (1)

In continuous probability, the rule (though there are exceptions), is that the
probability of any particular outcome is zero. Also, there are uncountably many
outcomes in a typical event. Both of these make (1) inapplicable. We do not
know how to sum uncountable many numbers, and, we might expect such a sum
rule to give the answer zero if all the terms in the sum were zero.

Examples of continuous probability spaces:

R, the real numbers. If ω is a real number and u(x) is a probability density,
then the probability of a small interval (ω− ε, ω+ ε) containing ω is (with
an abuse of notation)

P (ω − ε, ω + ε) =
∫ ω+ε

ω−ε
u(x)dx→ 0 as ε→ 0.

Thus the probability of ω itself should naturally be zero.

Rn, sequences of n numbers (possibly viewed as a row or column vector de-
pending on the context): X = (x1 . . . , Xn).

SN . Here S is the state space for a Markov chain (might be finite or countable)
and N is the “natural” numbers, 1, 2, 3, . . .. An element is an infinite
sequence of elements of S: X = (X1, X2, . . .). Generally, the probability
of any particular infinite sequence is zero. For example, if we have a two

state Markov chain with transition matrix
(
.6 .4
.3 .7

)
. If we call the

states U and D, then the probability of the infinite string UUU · · · should
be u(U) · .6 · .6 · · · · = 0: multiplying together infinitely many .6 numbers
converges to zero.
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C([0, T ] → R), the path space for Brownian motion. The C stands for “con-
tinuous”. The [0, T ] is the time interval 0 ≤ t ≤ T ; the square brackets
tell us to include the endpoints (0 and T in this case). Round parentheses
(0, T ) would mean to leave out 0 and T . The final R is the “target” space,
the real numbers in this case. An element of Ω is a continuous function
from the interval [0, T ] to R. If we call this function Xt for 0 ≤ t ≤ T , Xt

is a real number for each t ∈ [0, T ] and X is a continuous function of t.

1.2. Probability measures: We want to define the probabilities of events A ⊂
Ω. Since we cannot base these on the probabilities of the individual outcomes
in A, we just assume the probabilities are defined for events. For this we first
define σ−algebra. An algebra of events is a σ−algebra if, for any sequence of
events An ∈ Ω, the union union ∪∞n=1An is also an event in F . Suppose F is
a σ−algebra of events in Ω. The numbers P (A) for A ∈ F are a “probability
measure” if

i. If A ∈ F and B ∈ F are disjoint events, then P (A ∪B) = P (A) + P (B).

ii. P (A) ≥ 0 for any event A ∈ F .

iii. P (Ω) = 1.

iv. If An ∈ F is a sequence of events each disjoint from all the others and
∪∞n=1An = A, then

∑∞
n=1 P (An) = P (A).

The last property is called “countable additivity”. All the probability measures
we deal with in this course are countably additive.

1.3. Rn: A “ball” in n dimensional space is any of the sets Br(x) = {y |
|x−y| < r. This might be called an interval in one dimension and a disk in two,
but the term ball applies to any dimension, including 1 and 2. With |x−y| ≤ r,
we would have a “closed” ball, as opposed to the “open” ball above. This
makes no difference here. In fact, a σ−algebra that contains all open balls also
contains all closed balls, and any set in Rn you can describe without advanced
mathematical analysis. The σ−algebra generated by open balls is called the
Borel algebra, and events measurable in this algebra are called Borel sets. A
function u(x) is a probability density if it is never negative and

∫
Rn

u(x)dx = 1.
Such a probability density defines a probability measure on the Borel algebra
by

P (A) =
∫
A

u(x)dx .

It is can be shown that if u is measurable with respect to the Borel sets then
this probabiity measure is countable additive.

1.4. Integration with respect to a measure: The definition of integration
with respect to a general probability measure is easier than the definition of
the Riemann integral. Let Ω be a probability space, F a σ−algebra of events,
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and P a probability measure. A function f(ω) is measureable with respect to
F if all of the events Aab = {a ≤ f ≤ b} = {ω | a ≤ f(ω) ≤ b} are in F .
Because F is an algebra, the condition a ≤ f can be replaced by a < f , etc.
Any function on Rn (i.e. any function of n real variables), no matter how many
wierd discontinuities you try to throw in, will be measurable with respect to the
Borel algebra, unless you know serious advanced analysis. It happens in general
that a function may fail to be measurable with respect to some F , but this will
always (in this course) be due to a lack of information (small F) rather than
discontinuities in u.

The integral is written

E[f ] =
∫
ω∈Ω

f(ω)dP (ω) .

In Rn with a density u, this agrees with teh classical definition

E[f ] =
∫
Rn

f(x)u(x)dx .

Note that the abstract variable ω is replaced by the concrete variable, x, in this
more concrete situation. The general definition is forced on us once we make
the natural requirements

i. If A ∈ F is any event, then E[1A] = P (A). The integral of the indicator
function if an event is the probability of that event.

ii. If f1 and f2 have f1(ω) ≤ f1(ω) for all ω ∈ Ω, then E[f1] ≤ E[f2]. “Integra-
tion is monotone”.

iii. For any reasonable functions f1 and f2 (e.g. bounded), we have E[af1 +
bf2] = aE[f1] + bE[f2]. “Integration is linear”.

Now suppose f is a nonnegative bounded function: 0 ≤ f(ω) ≤ M for all
ω ∈ Ω. The integral of f is determined by the three properties above. Choose
a small number ε and define the “ring sets” An = {(n − 1)ε ≤ f < nε. The
An depend on ε but we do not indicate that. Although the events An might
be complicated, fractal, or whatever, Each of them is measurable. The “step
function” g(ω) =

∑
n(n − 1)ε1An takes the value (n − 1)ε on each of the sets

An (each ω is in only one An. For any ω, only one of the terms in the sum is
different from zero.). The sum defining g is finite because f is bounded, though
the number of terms is M/ε. Also, g(ω) ≤ f(ω) for each ω ∈ Ω (though by at
most ε). Therefore, the three properties of integration imply that

E[f ] ≥ E[g] =
∑
n

(n− 1)εE[An] =
∑
n

(n− 1)εP ((n− 1)ε ≤ f < nε) .

In the same way, we can consider the upper function h =
∑
n nε1A−n and have

E[f ] ≤ E[h] =
∑
n

nεE[An] =
∑
n

nεP ((n− 1)ε ≤ f < nε) .
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If you draw a picture of this situation for Ω = R, you will see the lower (g)
and upper (h) step functions bracketing f . When you replace ε by ε/2, the
lower step goes up and the upper step goes down. This gives a sequence of
approximations G(ε) ≤ E[f ] ≤ H(ε) with G(ε) increasing and H(ε) decreasing
as ε → 0. Finally, note that H(ε) − G(ε) ≤ ε, because that is how close the
upper and lower step approximations h and g are. Thus, as ε → 0, the upper
and lower approximations converge to the same number, which must be E[f ].
It is sometimes said that the difference between classical (Riemann) integration
and modern integration (here) is that we used to cut the x axis into little pieces,
but it is simpler to cut the y axis instead.

If the function f is positive but not bounded, it might happen that E[f ] =∞.
The “cut off” functions, fM (ω) = min(f(ω),M), might have E[fM ] → ∞ as
M → ∞. If f is both positive and negative (for different ω), we integrate the
positive part, f+(ω) = max(f(ω), 0), and the negative part f−(ω) = min(f(ω), 0
separately and subtract the results. We do not attempt a definition if E[f+] =∞
and E[f−] = −∞.

1.5. Markov chains with T = ∞: The probability space, Ω, is the set of
all infinite sequences X = (X1, X2, . . .), where each Xt is one of the states in
the state space S. Just as the Borel algebra of sets can be generated by balls,
the algebra of sets here can be generated by “cylinder” sets (don’t ask me how
they got that name). For each sequence of length L, x = (x1, . . . , xl), there is a
cylinder set Bx = {X | X1 = x1, . . . , XL = xL}. Other sets can be made from
countable set operations starting with these. For example, the event containing
the single sequence UUU · · · is the intersection of the events having the first L
entries U . In a slightly more complicated way, it is possible to express the event
“the first UUDDU occurs before the firstDDUD” in terms of cylinder sets. The
probabilities P (Bx) = u1(X1)

∏L−1
t=1 Pxt,xt+1 give rise to a probability measure

that is countably additive on this σ−algebra, another theorem of Kolmogorov.

1.6. Conditional expectation: We have a random variable X(ω) that is
measurable with respect to the σ−algebra, F , and a subalgebra G ⊂ F . We
want to define the conditional expectation Y = E[X | G]. When Ω is finite
we can define Y (ω) be knowing which partition block ω is in. In continuous
probability, a subalgebra might or might not be generated by a partition (I
don’t know), but even if it were, the sets in the partition would usually have
probability zero so Bayes’ rule would not be applicable. For example, suppose we
have a two dimensional random variable X = (X1, X2) with a density u(x1, x2)
and we want P (X1 > 3 | X2 = 0). The event B = {X2 = 0} has probability
P (B) = 0. There is a “classical” definition of conditional expectation for this
case (see homewrok 1), but the one “modern” definition works for all cases. The
definition is that Y (ω) is the random variable measurable with respect to G that
best approximates X in the least squares sense

E[(Y −X)2] = minZ ∈ GE[(Z −X)2] .

This is one of the definitions we gave before, the one that works for continuous
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and discrete probability. In the theory, it is possible to show that there is a
minimizer and that it is unique.

1.7. Generating a σ−algebra: When the probability space, Ω, is finite, we
can understand an algebra of sets by using the partition of Ω that generates the
algebra. This is not possible for continuous probability spaces. Another way
to specify an algebra for finite Ω was to give a function X(ω, or a collection
of functions Xk(ω) that are supposed to be measurable with respect to F . We
noted that any function measurable with respect to the algebra generated by
functions Xk is actually a function of the Xk. That is, if F ∈ F (abuse of
notation), then there is some function u(x1, . . . , xn) so that

F (ω) = u(X1(ω), . . . , Xn(ω)) . (2)

The intuition was that F contains the information you get by knowing the
values of the functions Xk. Any function measurable with respect to this alge-
bra is determined by knowing the values of these functions, which is precisely
what (2) says. This approach using functions is often convenient in continuous
probability.

If Ω is a continuous probability space, we may again specify functions Xk

that we want to be measurable. Again, these functions generate an algebra,
a σ−algebra, F . If F is measurable with respect to this algebra then there is
a (Borel measurable) function u(x1, . . .) so that F (ω) = u(X1, . . .), as before.
In fact, it is possible to define F in this way. Saying that A ∈ F is the same
as saying that 1A is measurable with respect to F . If u(x1, . . .) is a Borel
measurable function that takes values only 0 or 1, then the function F defined by
(2) defines a function that also takes only 0 or 1. The event A = {ω | F (ω) = 1
has (obviously) F = 1A. The σ−algebra generated by the Xk is the set of
events that may be defined in this way. A complete proof of this would take a
few pages.

1.8. Example in two dimensions: Suppose Ω is the unit square in two
dimensions: (x, y) ∈ Ω if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The “x coordinate function”
is X(x, y) = x. The information in this is the value of the x coordinate, but not
the y coordinate. An event measurable with respect to this F will be any event
determined by the x coordinate alone. I call such sets “bar code” sets. You can
see why by drawing some.

1.9. Marginal density and total probability: The abstract situation is that
we have a probability space, Ω with generic outcome ω ∈ Ω. We have some
functions (X1(ω), . . . , Xn(ω)) = X(ω). With Ω in the background, we can ask
for the joint PDF of (X1, . . . , Xn), written u(x1, . . . , xn). A formal definition of
u would be that if A ⊆ Rn, then

P (X(ω) ∈ A) =
∫
x∈A

u(x)dx . (3)
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Suppose we neglect the last variable, Xn, and consider the reduced vector
X̃(ω) = (X1, . . . , Xn−1) with probability density ũ(x1, . . . , xn−1). This ũ is
the “marginal density” and is given by integrating u over the forgotten variable:

ũ(x1, . . . , xn1) =
∫ ∞
−∞

u(x1, . . . , xn)dxn . (4)

This is a continuous probability analogue of the law of total probability: in-
tegrate (or sum) over a complete set of possibilities, all values of xn in this
case.

We can prove (4) from (3) by considering a set B ⊆ Rn−1 and the corre-
sponding set A ⊆ Rn given by A = B × R (i.e. A is the set of all pairs x̃, xn)
with x̃ = (x1, . . . , xn−1) ∈ B). The definition of A from B is designed so that
P (X ∈ A) = P (X̃ ∈ B). With this notation,

P (X̃ ∈ B) = P (X ∈ A)

=
∫
A

u(x)dx

=
∫
x̃∈B

∫ ∞
xn=−∞

u(x̃, xn)dxndx̃

P (X̃ ∈ B) =
∫
B

ũ(x̃)dx̃ .

This is exactly what it means for ũ to be the PDF for X̃.

1.10. Classical conditional expectation: Again in the abstract setting ω ∈ Ω,
suppose we have random variables (X1(ω), . . . , Xn(ω)). Now consider a function
f(x1, . . . , xn), its expectated value E[f(X)], and the conditional expectations

v(xn) = E[f(X) | Xn = xn] .

The Bayes’ rule definition of v(xn) has some trouble because both the denomi-
nator, P (Xn = xn), and the numerator,

E[f(X) · 1Xn=xn ] ,

are zero.
The classical solution to this problem is to replace the exact condition Xn =

xn with an approximate condition having positive (though small) probability:
xn ≤ Xn ≤ xn + ε. We use the approximaion∫ xn+ε

xn

g(x̃, ξn)dξn ≈ εg(x̃, xn) .

The error is roughly proportional to ε2 and much smaller than either the terms
above. With this approximation the numerator in Bayes’ rule is

E[f(X) · 1xn≤Xn≤xn+ε] =
∫
x̃∈Rn−1

∫ ξn=xn+ε

ξn=xn

f(x̃, ξn)u(x̃, xn)dξndx̃

≈ ε

∫
x̃

f(x̃, xn)u(x̃, xn)dx̃ .
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Similarly, the denominator is

P (xn ≤ Xn ≤ xn + ε) ≈ ε
∫
x̃

u(x̃, xn)dx̃ .

If we take the Bayes’ rule quotient and let ε→ 0, we get the classical formula

E[f(X) | Xn = xn] =

∫
x̃
f(x̃, xn)u(x̃, xn)dx̃∫

x̃
u(x̃, xn)dx̃

. (5)

By taking f to be the characteristic function of an event (all possible events)
we get a formula for the probability density of X̃ given that Xn = xn, namely

ũ(x̃ | Xn = xn) =
u(x̃, xn)∫

x̃
u(x̃, xn)dx̃

. (6)

This is the classical formula for conditional probability density. The integral
in the denominator insures that, for each xn, ũ is a probability density as a
function of x̃, that is ∫

ũ(x̃ | Xn = xn)dx̃ = 1 ,

for any value of xn. It is very useful to notice that as a function of x̃, u and ũ
almost the same. They differ only by a constant normalization. For example,
this is why conditioning Gaussian’s gives Gaussians.

1.11. Modern conditional expectation: The classical conditional expectation
(5) and conditional probability (6) formulas are the same as what comes from
the “modern” definition from paragraph 1.6. Suppose X = (X1, . . . , Xn) has
density u(x), F is the σ−algebra of Borel sets, and G is the σ−algebra generated
by Xn (which might be written Xn(X), thinking of X as ω in the abstract
notation). For any f(x), we have f̃(xn) = E[f | G]. Since G is generated by
Xn, the function f̃ being measurable with respect to G is the same as it’s being
a function of xn. The modern definition of f̃(xn) is that it minimizes∫

Rn

(
f(x)− f̃(xn)

)2

u(x)dx , (7)

over all functions that depend only on xn (measurable in G).
To see the formula (5) emerge, again write x = (x̃, xn), so that f(x) =

f(x̃, xn), and u(x) = u(x̃, xn). The integral (7) is then∫ ∞
xn=−∞

∫
x̃∈Rn−1

(
f(x̃, xn)− f̃(xn)

)2

u(x̃, xn)dx̃dxn .

In the inner integral:

R(xn) =
∫
x̃∈Rn−1

(
f(x̃, xn)− f̃(xn)

)2

u(x̃, xn)dx̃ ,
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f̃(xn) is just a constant. We find the value of f̃(xn) that minimizes R(xn) by
minimizing the quantity∫

x̃∈Rn−1
(f(x̃, xn)− g)2

u(x̃, xn)dx̃ =∫
f(x̃)2u(x̃, xn)dx̃+ 2g

∫
f(x̃)u(x̃, xn)dx̃+ g2

∫
u(x̃, xn)dx̃ .

The optimal g is given by the classical formula (5).

1.12. Modern conditional probability: We already saw that the modern ap-
proach to conditional probability for G ⊂ F is through conditional expectation.
In its most general form, for every (or almost every) ω ∈ Ω, there should be
a probability measure Pω on Ω so that the mapping ω → Pω is measureable
with respect to G. The measurability condition probably means that for every
event A ∈ F the function pA(ω) = Pω(A) is a G measurable function of ω.
In terms of these measures, the conditional expectation f̃ = E[f | G] would be
f̃(ω) = Eω[f ]. Here Eω means the expected value using the probability measure
Pω. There are many such subscripted expectations coming.

A subtle point here is that the conditional probability measures are defined
on the original probability space, Ω. This forces the measures to “live” on
tiny (generally measure zero) subsets of Ω. For example, if Ω = Rn and G is
generated by xn, then the conditional expectation value f̃(xn) is an average of
f (using density u) only over the hyperplane Xn = xn. Thus, the conditional
probability measures PX depend only on xn, leading us to write Pxn . Since
f̃(xn) =

∫
f(x)dPxn(x), and f̃(xn) depends only on values of f(x̃, xn) with

the last coordinate fixed, the measure dPxn is some kind of δ measure on that
hyperplane. This point of view is useful in many advanced problems, but we
will not need it in this course (I sincerely hope).

1.13. Semimodern conditional probability: Here is an intermediate “semi-
modern” version of conditional probability density. We have Ω = Rn, and
Ω̃ = Rn−1 with elements x̃ = (x1, . . . , xn−1). For each xn, there will be a (con-
ditional) probability density function ũxn . Saying that ũ depends only on xn is
the same as saying that the function x→ ũxn is measurable with respect to G.
The conditional expectation formula (5) may be written

E[f | G](xn) =
∫
Rn−1

f(x̃, xn)ũxn(x̃)dx̃ .

In other words, the classical u(x̃ | Xn = xn) of (6) is the same as the semimodern
ũxn(x̃).

2 Gaussian Random Variables

The central limit theorem (CLT) makes Gaussian random variables important.
A generalization of the CLT is Donsker’s “invariance principle” that gives Brow-

8



nian motion as a limit of random walk. In many ways Brownian motion is a
multivariate Gaussian random variable. We review multivariate normal random
variables and the corresponding linear algebra as a prelude to Brownian motion.

2.1. Gaussian random variables, scalar: The one dimensional “standard
normal”, or Gaussian, random variable is a scalar with probability density

u(x) =
1√
2π
e−x

2/2 .

The normalization factor 1√
2π

makes
∫∞
−∞ u(x)dx = 0 (a famous fact). The

mean value is E[X] = 0 (the integrand xe−x
2/2 is antisymmetric about x = 0).

The variance is (using integration by parts)

E[X2] =
1√
2π

∫ ∞
−∞

x2e−x
2/2dx

=
1√
2π

∫ ∞
−∞

x
(
xe−x

2/2
)
dx

= − 1√
2π

∫ ∞
−∞

x

(
d

dx
e−x

2/2

)
dx

= − 1√
2π

(
xe−x

2/2
)∣∣∣∣∞
−∞

+
1√
2π

∫ ∞
−∞

e−x
2/2dx

= 0 + 1

Similar calculations give E[X4] = 3, E[X6] = 15, and so on. I will often write
Z for a standard normal random variable. A one dimensional Gaussian random
variable with mean E[X] = µ and variance var(X) = E[(X − µ)2] = σ2 has
density

u(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

It is often more convenient to think of Z as the random variable (like ω) and
write X = µ+σZ. We write X ∼ N (µ, σ2) to express the fact that X is normal
(Gaussian) with mean µ and variance σ2. The standard normal random variable
is Z ∼ N (0, 1)

2.2. Multivariate normal random variables: The n×n matrix, H, is positive
definite if x∗Hx > 0 for any n component column vector x 6= 0. It is symmetric
if H∗ = H. A symmetric matrix is positive definite if and only if all its eigenvales
are positive. Since the inverse of a symmetric matrix is symmetric, the inverse
of a symmetric positive definite (SPD) matrix is also SPD. An n component
random variable is a mean zero multivariate normal if it has a probability density
of the form

u(x) =
1
z
e−

1
2x
∗Hx ,
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for some SPD matrix, H. We can get mean µ = (µ1, . . . , µn)∗ either by taking
X + µ where X has mean zero, or by using the density with x∗Hx replaced by
(x− µ)∗H(x− µ).

If X ∈ Rn is multivariate normal and if A is an m× n matrix with rank m,
then Y ∈ Rm given by Y = AX is also multivariate normal. Both the cases
m = n (same number of X and Y variables) and m < n occur.

2.3. Diagonaiizing H: Suppose the eigenvalues and eigenvectors of H are
Hvj = λjvj . We can express x ∈ Rn as a linear combination of the vj either in
vector form, x =

∑n
j=1 yjvj , or in matrix form, x = V y, where V is the n × n

matrix whose columns are the vj and y = (y1, . . . , yn)∗. Since the eigenvectors
of a symmetric matrix are orthogonal to each other, we may normalize them so
that v∗j vk = δjk, which is the same as saying that V is an orthogonal matrix,
V ∗V = I. In the y variables, the “quadratic form” x∗Hx is diagonal, as we can
see using the vector or the matrix notation. With vectors, the trick is to use the
two expressions x =

∑n
j=1 yjvj and x =

∑n
k=1 ykvk, which are the same since j

and k are just summation variables. Then we can write

x∗Hx =

 n∑
j=1

yjvj

∗H ( n∑
k=1

ykvk

)

=
∑
jk

(
v∗jHvk

)
yjyk

=
∑
jk

λkv
∗
j vkyjyk

x∗Hx =
∑
k

λky
2
k . (8)

The matrix version of the eigenvector/eigenvalue relations is V ∗HV = Λ (Λ be-
ing the diagonal matrix of eigenvalues). With this we have x∗Hx = (V y)∗HV y =
y∗(V ∗HV )y = y∗Λy. A diagonal matrix in the quadratic form is equivalent to
having a sum involving only squares λky2

k. All the λk will be positive if H is
positive definite. For future reference, also remember that det(H) =

∏n
k=1 λk.

2.4. Calculations using the multivariate normal density: We use the y
variables as new integration variables. The point is that if the quadratic form is
diagonal the muntiple integral becomes a product of one dimensional gaussian
integrals that we can do. For example,∫

R2
e−

1
2 (λ1y

2
1+λ2y

2
2)dy1dy2 =

∫ ∞
y1=−∞

∫ ∞
y2=−∞

e−
1
2 (λ1y

2
1+λ2y

2
2)dy1dy2

=
∫ ∞
y1=−∞

e−λ1y
2
1/2dy1 ·

∫ ∞
y2=−∞

e−λ2y
2
2/2dy2

=
√

2π/λ1 ·
√

2π/λ2 .
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Ordinarily we would need a Jacobian determinant representing
∣∣∣dxdy ∣∣∣, but here

the determinant is det(V ) = 1, for an orthogonal matrix. With this we can find
the normalization constant, z, by

1 =
∫
u(x)dx

=
1
z

∫
e−

1
2x
∗Hxdx

=
1
z

∫
e−

1
2y
∗Λydy

=
1
z

∫
exp(−1

2

n∑
k=1

λky
2
k))dy

=
1
z

∫ ( n∏
k=1

e−λky
2
k

)
dy

=
1
z

n∏
k=1

(∫ ∞
yk=−∞

e−λky
2
kdyk

)

=
1
z

n∏
k=1

√
2π/λk

1 =
1
z
· (2π)n/2√

det(H)
.

This gives a formula for z, and the final formula for the multivariate normal
density

u(x) =

√
detH

(2π)n/2
e−

1
2x
∗Hx . (9)

2.5. The covariance, by direct integration: We can calculate the covariance
matrix of the Xj . The jk element of E[XX∗] is E[XjXk] = cov(Xj , Xk). The
covariance matrix consisting of all these elements is C = E[XX∗]. Note the
conflict of notation with the constant C above. A direct way to evaluate C is
to use the density (9):

C =
∫
Rn

xx∗u(x)dx

=

√
detH

(2π)n/2

∫
Rn

xx∗e−
1
2x
∗Hxdx .

Note that the integrand is an n × n matrix. Although each particular xx∗

has rank one, the average of all of them will be a nonsingular positive definite
matrix, as we will see. To work the integral, we use the x = V y change of
variables above. This gives

C =

√
detH

(2π)n/2

∫
Rn

(V y)(V y)∗e−
1
2y
∗Λydy .

11



We use (V y)(V y)∗ = V (yy∗)V ∗ and take the constant matrices V outside the
integral. This gives C as the product of three matrices, first V , then an integral
involving yy∗, then V ∗. So, to calculate C, we can calculate all the matrix
elements

Bjk =

√
detH

(2π)n/2

∫
Rn

yjy
∗
ke
− 1

2y
∗Λydy .

Clearly, if j 6= k, Bjk = 0, because the integrand is an odd (antisymmetric)
function, say, of yj . The diagonal elements Bkk may be found using the fact
that the integrand is a product:

Bkk =

√
detH

(2π)n/2
∏
j 6=k

(∫
yj

e−λjy
2
j/2dyj

)
·
∫
yk

y2
ke
−λky2

k/2dyk .

As before, λj factors (for j 6= k) integrate to
√

2π/λj . The λk factor integrates
to
√

2π/(λk)3/2. The λk factor differs from the others only by a factor 1/λk.
Most of these factors combine to cancel the normalization. All that is left is

Bkk =
1
λk

.

This shows that B = Λ−1, so

C = V Λ−1V ∗ .

Finally, since H = V ΛV ∗, we see that

C = H−1 . (10)

The covariance matrix is the inverse of the matrix defining the multivariate
normal.

2.6. Linear functions of multivariate normals: A fundamental fact about
multivariate normals is that a linear transformation of a multivariate normal is
also multivariate normal, provided that the transformation is onto. Let A be
an m × n matrix with m ≤ n. This A defines a linear transformation y = Ax.
The transformation is “onto” if, for every y ∈ Rm, there is at least ibe x ∈ Rn
with Ax = y. If n = m, the transformation is onto if and only if A is invertable
(det(A) 6= 0), and the only x is A−1y. If m < n, A is onto if its m rows
are linearly independent. In this case, the set of solutions is a “hyperplane”
of dimension n − m. Either way, the fact is that if X is an n dimensional
multivariate normal and Y = AX, then Y is an m dimensional multivariate
normal. Given this, we can completely determine the probability density of Y
by calculating its mean and covariance matrix. Writing µX and µY for the
means of X and Y respectively, we have

µY = E[Y ] = E[AX] = AE[X] = AµX .

12



Similarly, if E[Y ] = 0, we have

CY = E[Y Y ∗] = E[(AX)(AX)∗] = E[AXX∗A∗] = AE[XX∗]A∗ = ACXA
∗ .

The reader should verify that if CX is n× n, then this formula gives a CY that
is m×m. The reader should also be able to derive the formula for CY in terms
of CX without assuming that µY = 0. We will soon give the proof that linear
functions of Gaussians are Gaussian.

2.7. Uncorrelation and independence: The inverse of a symmetric matrix
is another symmertic matrix. Therefore, CX is diagonal if and only if H is
diagonal. If H is diagonal, the probability density function given by (9) is a
product of densities for the components. We have already used that fact and
will use it more below. For now, just note that CX is diagonal if and only if the
components of X are uncorrelated. Then CX being diagonal implies that H is
diagonal and the components of X are independent. The fact that uncorrelated
components of a multivariate normal are actually independent firstly is a prop-
erty only of Gaussians, and secondly has curious consequences. For example,
suppose Z1 and Z2 are independent standard normals and X1 = Z1 + Z2 and
X2 = Z1 − Z2, then X1 and X2, being uncorrelated, are independent of each
other. This may seem surprising in view of that fact that increasing Z1 by 1/2
increases both X1 and X2 by the same 1/2. If Z1 and Z2 were independent uni-
form random variables (PDF = u(z) = 1 if 0 ≤ z ≤ 1, u(z) = 0 otherwise), then
again X1 and X2 would again be uncorrelated, but this time not independent
(for example, the only way to get X1 = 2 is to have both Z1 = 1 and Z2 = 1,
which implies that X2 = 0.).

2.8. Application, generating correlated normals: There are simple tech-
niques for generating (more or less) independent standard normal random vari-
ables. The Box Muller method being the most famous. Suppose we have a
positive definite symmetric matrix, CX , and we want to generate a multivari-
ate normal with this covariance. One way to do this is to use the Choleski
factorization CX = LL∗, where L is an n × n lower triangular matrix. Now
define Z = (Z1, . . . , Zn) where the Zk are independent standard normals. This
Z has covariance CZ = I. Now define X = LZ. This X has covariance
CX = LIL∗ = LL∗, as desired. Actually, we do not necessarily need the
Choleski factorization; L does not have to be lower triangular. Another possi-
bility is to use the “symmetric square root” of CX . Let CX = V ΣV ∗, where
Σ is the diagonal symmetric matrix with eigenvalues of CX (Σ = Λ−1 where
Λ is given above), and V is the orthogonal matrix if eigenvectors. We can
take A = V

√
ΣV ∗, where

√
Σ is the diagonal matrix. Usually the Choleski

factorization is easier to get than the symmetric square root.

2.9. Central Limit Theorem: Let X be an n dimensional random variable
with probability density u(x). Let X(1), X(2), . . ., be a sequence of independent
samples of X, that is, independent random variables with the same density u.
Statisticians call this iid (independent, identically distributed). If we need to
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talk about the individual components of X(k), we write X(k)
j for component j

of X(k). For example, suppose we have a population of people. If we choose a
person “at random” and record his or her height (X1) and weight (X2), we get a
two dimensional random variable. If we measure 100 people, we get 100 samples,
X(1), . . ., X(100), each consisting of a height and weight pair. The weight of
person 27 is X(27)

2 . Let µ = E[X] be the mean and C = E[(X − µ)(X − µ)∗]
the covariance matrix. The Central Limit Theorem (CLT) states that for large
n, the random variable

R(n) =
1√
n

n∑
k=1

(X(k) − µ)

has a probability distribution close to the multivariate normal with mean zero
and covariance C. One interesting consequence is that if X1 and X2 are uncor-
related then an average of many independent samples will have R(

1n) and R
(n)
2

nearly independent.

2.10. What the CLT says about Gaussians: The Central Limit Theorem
tells us that if we avarage a large number of independent samples from the
same distribution, the distribution of the average depends only on the mean
and covariance of the starting distribution. It may be surprising that many
of the properties that we deduced from the formula (9) may be found with
almost no algebra simply knowing that the multivariate normal is the limit of
averages. For example, we showed (or didn’t show) that if X is multivariate
normal and Y = AX where the rows of A are linearly independent, then Y is
multivariate normal. This is a consequence of the averaging property. If X is
(approximately) the average of iid random variables Uk, then Y is the average
of random variables Vk = AUk. Applying the CLT to the averaging of the Vk
shows taht Y is also multivariate normal.

Now suppose U is a univariate random variable with iid samples Uk, and
E[Uk] = 0, E[U2

k = σ2], and E[U4
k ] = a4 < ∞ Define Xn = 1√

n

∑n
k=n Uk. A

calculation shows that E[X4
n] = 3σ4 + 1

na4. For large n, the fourth moment of
the average depends only on the second moment of the underlying distribution.
A multivariate and slightly more general version of this calculation gives “Wick’s
theorem”, an expression for the expected value of a product of components of
a multivariate normal in terms of covariances.
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