
Stochastic Calculus Notes, Lecture 3
Last modified September 17, 2002

1 Recurrence relations for Markov Chains

1.1. Recapituation and notation: To summarize terminology for Markov
Chains (lecture 1, paragraph 2.??)

Ft: the algebra generated by X1, . . ., Xt. The partition generating Ft con-
sists of sets Bx where x = (x1, . . . , xt), is an initial segment of a path of
lenght t. The sets are Bx = {X | X1 = x1, . . . , Xt = xt}. To check your
understanding, show that the number of paths in Bx is sT−t, where s is
the number of states: s = |S|. This algebra represents knowing the path
X up to and including time t. Being measurable with respect to Ft means
being constant on each of the sets Bx, i.e. a function of X1, . . ., Xt.

Gt: the algebra generated by Xt alone. The patrition generating Gt consists of
one set, Bj , for each state j ∈ S. Then Bj = {X | Xt = j}. There are s
such Bj , each with sT−1 paths. This algebra represents knowing only the
present state but not past or future states. Being measurable with respect
to Gt means being constant on each of the Bj , i.e. a function of j.

Ht: the algebra generated by Xt, . . ., XT . This represents knowledge of the
present and all future states.

The Markov property is that

E [F (X) | Gt] = E [F (X) | Ft] ,

for any F ∈ Ht (i.e. F depending only on present and future states). This is
the modern version. The classical expression for the same property is that if F
depends only on Xt, . . ., XT , then

E [F (X) | Xt = j] = E [F (X) | Xt = j,Xt−1 = k, . . .] .

1.2. The “law of total probability”: The classical theorem is that if Bk,
k = 1, . . . , n is any partition of Ω, then, for any function,

E [F ] =
n∑
k=1

P (Bk)E [F | Bk] .

It is easy to verify this using the (classical) definition of conditional expectation.
This is a special case of a relation about modern style conditional expectation:
if F and G are two algebras with G ⊂ F , (G has less information) then

E[F | G] = E [E[F | F ] | G] .
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The classical statement corresponds to the modern one with G being the “trivial”
algebra consisting of only ∅ and Ω. A classical statement of the more general
modern version might start with any event, A. The relation is

E[F | A] =
n∑
k=1

P (Bk | A) · E[F | Bk and A] .

1.3. Backward equation, classical version: The simplest case is when we
want the expected value of a “payout”, V , that depends only on the final state:
F (X) = V (XT ). It is possible to compute E[V (XT )] as the byproduct of a
system collection of calculations of related quantities:

ft(j) = E [V (XT ) | Xt = j] .

We apply the law of total probability to the right side with A being the event
Xt = j and Bk defined respectively by Xt+1 = k. The Markov property implies
that

E [V (XT ) | Xt+1 = k and Xt = j] = E [V (XT ) | Xt+1 = k] = ft+1(k).

This gives:

ft(j) =
s∑

k=1

P (Xt+1 = k | Xt = j) · E[V (XT ) | Xt+1 = k and Xt = j]

ft(j) =
s∑

k=1

Pjkft+1(k) . (1)

This gives us a way to calculate all the ft(j) working backwards in time. The
final values fT (j) are clearly given by

FT (j) = E[V (XT ) | XT = j] = V (j) .

Then we can use (1) to compute all the values fT−1, then all the values fT−2,
and so on. It is a major shortcoming of the backward equation method that
you must compute the values of ft(j) for each state j ∈ S. In many cases S,
though finite, is too large for such computations to be practical.

1.4. Backward equation, matrix version: The equation (1) may be expressed
in matrix terms. For each t, define a vector, ft, with s components given by

ft = (ft(1), . . . , ft(s))∗ .

The notation (ft(1), . . . , ft(s))∗ refers the column vector that is the transpose
of the row vector (ft(1), . . . , ft(s)). We will make good use of the distinction
between row vectors, which may be thought of an 1 × s matrices, and column
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vectors, which may be thought of as s× 1 matrices. The recurrence relation (1)
is equivalent to

ft = P · ft+1 . (2)

Here, P is the transition matrix defined in lecture 1, paragraph 2.??, and the
right side is interpreted as matrix multiplication. If ft were a row vector, the ex-
pression P ·ft+1 would not make sense as matrix multiplication. The recurrence
relation (2) may be iterated to give

ft−k = P kft .

1.5. Forward equation, classical version: The backward equation describes
the evolution of expectation values while the forward equation describes the
evolution of probabilities. We use the notation

ut(j) = P (Xt = j) .

We can compute the time t + 1 probabilities in terms of the time t probabil-
ities using the law or total probability above. We wish to compute ut1(k) =
P (Xt+1 = k) and the partition is the s events Bj = {Xt = j}. This gives

ut+1(k) = P (Xt+1 = k)

=
s∑
j=1

P (Xt = j)P (Xt+1 = k | Xt = j)

ut+1(k) =
s∑
j=1

ut(j)Pjk (3)

This is a forward moving evolution equation that allows us to compute the
probability distribution at later times from the distribution at earlier times.

1.6. Initial data and path probabilities: A point I’ve ignored until now is
that the transition matrix alone does not determine the probabilities. We also
need the initial probabilities P (X1 = j) = u1(j). Right now, that means that
the “initial values” or “initial data” we need to compute all the ut(j) is actually
new information. With this we can complete the path probability computation.
If X = (X1, X2, . . . , XT ), it’s probability is

P (X) = u1(X1)
T−1∏
t=1

PXt,Xt+1 .

1.7. Forward equation, matrix version: In contrast to the matrix version
of the backward equation, we let ut be the row vector ut = (ut(1), . . . , ut(s)).
Then the forward equation (3) may be expresses as

ut+1 = utP , (4)
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where P again is the transition matrix. It may seem odd to express matrix
vector multiplication with the vector on the left of the matrix, but it is natural
if we think of ut as a 1× s matrix. The expression Put is not even compatible
for matrix multiplication. As with the backward equation, we can iterate (2) to
get, for example, ut = u1P

t−1.

1.8. Expectation value: We combine the conditional expectations ft(j)
defined in paragraph 1.3 with the probabilities ut(j) above and the law of total
probability to get, for any given t,

E[V (XT )] =
s∑
j=1

P (Xt = j)E[V (XT ) | Xt = j]

=
s∑
j=1

ut(j)ft(j)

= utft .

The last line is the matrix product of the row vector ut, thought of as a 1 × s
matrix, with the column vector ft, thought of as an s× 1 matrix. By the rules
of matrix multiplication, the result should be a 1× 1 matrix, that is, a number.
We will be using this formula and generalizations of it often throughout the
course. For now, note the curious fact that although ut and ft are different for
different t values, the product utft is not; it is invariant. For this invariance
to be possible, the forward evolution for ut and the backward evolution for ft
must be related.

1.9. Relationship between the forward and backward equations: In fact, if we
know that utft is independent of t, then the backward evolution (2) implies the
forward evolution (4) and vice versa. For example, ut+1ft+1 = utft, together
with the backward evolution implies that ut+1ft+1 = utPft+1. This implies
that

(ut+1 − utP ) ft+1 = 0 .

(Note that we used the associativity, (AB)C = A(BC), of matrix multiplication
(u(Pf) = (uP )f) and the distributive property. This is why we were eager to
express the evolution equations as matrix multiplication and, in particular, to
distinguish between row and column vectors.) If this is true for a set of s linearly
independent vectors ft+1, then the vector (ut+1 − utP ) must be zero, which is
(4). A theoretically minded reader can verify that enough f vectors are available
if the transition matrix is nonsingular. In the same way, the backward evolution
of f is a consequence of invariance and the forward evolution of u.

1.10. Duality: Duality refers to a collection of ideas useful in linear algrbra
and its generalizations. In it’s simplest form, it is the relationship between a
matrix and it’s transpose. The set of column vectors with s components is
a vector space. The set of s component row vectors is the dual space. We
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can combine an element of a vector space with an element of its dual to get a
number. This is the product of the 1 × s matrix u with the s × 1 matrix f .
Any linear transformation on the vector space of column vectors is represented
by an s × s matrix, P . This matrix then defines a linear transformation, the
dual transformation, on the dual space of row vectors, given by u → uP . In
this sense, the forward and backward equations are dual to each other.

1.11. Duality, adjoint, and transpose: Duality may be related to the matrix
transpose operation. If you want to keep all vectors as colums, then the row
vector we called u would be called u∗ for the column vector u. We denote
the transpose of a real matrix by a ∗ so that T or t is not over used. If we
think of u as a column vector, then the forward evolution equation (4) would be
written ut+1 = P ∗ut. For this reason, the transpose of a matrix is sometimes
called its dual. The invatiant quantity would be written u∗t ft, etc. If we ever
meet a matrix, A, with complex entries, A∗ will denote the conjugate transpose
matrix: flip the matrix and take the complex conjugate of the entries. That
matrix is often called the adjoint matrix to A. Warning, the term “adjoint”
is often used for the matrix det(A)A−1, whose entries are the determinants of
principal minors of A. I will not use adjoint in this sense. Later in the course,
the matrix P will be replaced by a “differential operator” that is he “generator”
of a kind of Markov process. The adjoint of the generator is another differential
operator. Duality will be with us until the end.

2 Martingales and stopping times

2.1. Stochstic process: We have a probability space, Ω. The information
available at time t is represented by the algebra of events Ft. We assume that for
each t, Ft ⊂ Ft+1; since we are supposed to gain information every known event
in Ft is also known at time t + 1. A stochastic process is a family of random
variables, Xt(ω), with Xt ∈ Ft (reminder, this in an abuse of notation that
represents the hypothesis that Xt is measureable with respect to Ft). Sometimes
it happens that the random variables Xt contain all the information in the Ft
in the sense that Ft is generated by X1, . . ., Xt. This the “minimal algebra”
in which the Xt form a stochastic process. In other cases Ft contains more
information. Economists use these possibilities when they distinguish between
the “weak efficient market hypothesis” (the Ft are minimal), and the “strong
hypothesis” (Ft contains all the information in the world, literally). In the case
of minimal Ft, it may be possible to identify the outcome, ω, with the path
X = X1, . . . , XT . This is not possible when the Ft are not minimal. For the
definition of stochastic process, the actual probabilities are not important, just
the algebras of sets and “random” variables Xt.

2.2. Example 1, Markov chains: In this example, the Ft are minimal and
Ω is the path space of sequences of length T from the state space, S. The
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variables Xt are may be called “coordinate functions” because Xt is coordinate
t (or entry t) in the sequence X. In principle, we could express this with the
notation Xt(X), but that would drive people crazy. Although we distinguish
between Markov chains (discrete time) and Markov processes (continuous time),
the term “stochastic process” can refer to either continuous or discrete time.

2.3. Example 2, diadic sets: This is a set of definitions for discussing averages
over a range of length scales. The “time” variable, t, represents the amount of
averaging that has been done. At the “first” time, t = 1, we have only the
overall average. At “later” times, we have averages over smaller and smaller
sets. Only at the final time, T , is the original random variable completely
known. To go from time t + 1 to time t, we combine two level t + 1 averages
to produce a coarser level t average. The actual averaging process is discussed
below. Here we only define the sets being averaged over. The coming definitions
would be simpler if time and “space” variables were to start with 0 rather
than 1. I’ve chosen to start always with 1 to be consistent with notations
used above and below. The whole space, Ω, consists of 2T−1 objects, which
we call 1, . . ., 2T−1 (It would be 2t if we were to start with t = 0 rather than
t = 1.). The partition defining Ft is given by “diadic” sets with 2T−t consecutive
elements each, called Bt,k for k = 1, . . . , 2t−1. At time t = 1 there is just one
B, which is the whole of Ω. At time t = 1, there are two, B2,1 = {1, . . . , 2T−2},
and B2,2 = {2T−2 + 1, . . . , 2T−1}. At time T − 1 there are |Ω| /2 = 2T−2

diadic sets with two elements each: BT−1,1 = {1, 2}, BT−1,2 = {3, 4}, . . .,
BT−1,2T−2 = {2T−1−1, 2T−1}. At level T −2, the partition sets BT−2,k contain
4 consecutive elements each. In general, Bt,k = {(k − 1)2T−t + 1, . . . , k2T−t}.
The reader should check in detail that the general definition agrees with the
cases t = 1, 2, T − 2, T − 1, and T . The diadic property is that each level t set
is the uninion of two consecutive level t+ 1 sets: Bt,k = Bt+1,2k−1 ∩Bt+1,2k.

For now, we will take the define the Xt by Xt(ω) = k if ω ∈ Bt, k. For
example, this gives XT (ω) = ω, X1(ω) = 1 for all ω ∈ Ω, and, in general,
Xt(ω) = int(ω/2??), where int(a) is the largest integer not exceeding a.

2.4. Martingales: A real valued stochastic process, Xt, is a martingale if

E[Xt+1 | Ft] = Xt .

If we take the overall expectation of both sides we see that the expectation value
does not depend on t, E[Xt+1] = E[Xt]. The martingale property says more.
Whatever information you might have at time t notwithstanding, still the expec-
tation of future values is the present value. There is a gambling interpretation:
Xt is the amount of money you have at time t. No matter what has happened,
your expected winnings at between t and t + 1, the “martingale difference”
Yt+1 = Xt+1 −Xt, has zero expected value. You can also think of martingale
differences as a generalization of independent random variables. If the random
variables Yt were actually independent, then the sums Xt =

∑t
k=1 Yt would

form a martingale (using the Ft, generated by the Y1, . . ., Yt). The reader
should check this.
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2.5. A lemma on conditional expectation: In working with martingales we
often make use of a basic lemma about conditional expectation. Suppose U(ω)
and V (ω) are real valued random variables and that V ∈ F . Then

E[V U | F ] = V E[U | F ] .

This is easy to see in the classical definition of conditional expectation. Suppose
B is one of the sets in the partition defining F and that W = E[U(ω) | ω ∈ B].
We know that V (ω) is constant in B because V ∈ F . Call this value v. Then
E[V U | B] = vE[U | B] = vW . This shows that no matter which partition set
ω falls in, E[V U | B] = V E[U | B], which is exactly the (classical version of)
the lemma.

2.6. More martingales: This lemma leads to lots of martingales. Suppose the
“multipliers” Mt are functions of Y1, . . ., Yt−1 (leaving out Yt), then the sums
Xt =

∑t
k=1MtYt also form a martingale if the Yt have mean value zero. Let us

check this. In the algebra Ft we know the values of all the Yk for 1 ≤ k ≤ t.
Therefore, we know the value of Mt+1, which is to say that Mt+1 ∈ Ft. This
shows that

E[Xt+1 | Ft] = Xt +Mt+1E[Yt+1 | Ft] = Xt .

At the end we used the fact that E[Yt+1] = 0, and that Yt+1 is independent
of all the earlier Yk which generarate Ft. This is a simple generalization of
summing independent mean zero random variables. Even though the martingale
differences Xt+1 − Xt = Mt+1Yt+1 are not independent, they still have mean
value zero, conditioned on Ft.

2.7. Weak and strong efficient markets: It is possible that the family of
random variables Xt might or might not form a martingale depending on what
increasing family of algebras you use. For example, suppose Xt is a stochastic
process with respect to the algebras Ft and form a martingale with respect
to them. Now suppose Gt is the algebra generated by X1, . . ., Xt+1. Clearly,
E[Xt+1 | Gt] = Xt+1 6= Xt. The Xt form a martingale with respect to the Ft
but not with respect to the additional information in Gt.

2.8. Doob’s principle: Notice what happened here. We started with a simple
martingale that was built of the sum of independent mean zero random variables.
Then we built a more complex stochastic process, Xt+1 = Xt+Mt+1Yt+1, where
the value of Mt+1 is known at time t. One can think of this as building an
investment strategy; collecting information by watching the market up to time
t then placing a “bet” of size M on the still unknown random variable Yt+1. No
matter how this is done, the result is still a martingale. This is a general feature
of martingales: any betting strategy that at time t uses only Ft information
produces another martingale. Other instances of this principle are formulated
below. This “Doob’s principle”, named for the probabilist who formulated it, is
one of the things that makes martingales handy.
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2.9. Example, conditional expectations: Suppose Ft is any expanding family
of algebras and V is any random variable. (We are allowed to say “any”, with
no technical hypotheses, because Ω is finite. This luxury does not last forever.)
The conditional expectations Ft = E[V | Ft] form a martingale. This is a
consequence of the rules of iterated conditional expectation, lecture 1, paragraph
1.??. In particular, if Xt are the states of a Markov chain, then the random
variables

Ft = ft(Xt) = E[V (XT ) | Ft]

form a martingale.

2.10. Example 2, continued: Suppose we have a function V (ω) defined
for integers ω in the range 1 ≤ ω ≤ 2T−1. Suppose that we specify uniform
probabilities, P (ω) = 2−T+1, for all ω. Then the conditional expectations that
are the values of Ft are averages of V over dyadic blocks of size 2T−t. The
random variable F1 is just the average of V . Next, F2(ω) equals the average
over the first half if ω is in the first half and over the second half if ω is in the
second half. The graph of F1 is just a constant while the graph of F2 is two
constants separated by a step at the midpoint. The graph of F2 is 4 constants
with 3 steps, and so on. If we plot all these graphs together, we get a better
and better picture of the graph of the original function, V . You could do the
same with a two dimensional function given by an image. What this looks like
can be seen on the class bboard.

2.11. Doob’s principle continued: Suppose Ft is any martingale with martin-
gale differences Yt = Ft−Ft−1, and that Mt ∈ Ft. Then the modified stochastic
process Gt defined by

Gt+1 = Gt +MtYt+1

is also a martingale. This follows as before: E[Gt+1−Gt | Ft] is just E[MtYt+1 |
Ft] which vanishes because Mt ∈ Ff and E[Yt+1 | Ft] = 0.

2.12. Investing with Doob: Economists sometimes use this to make a point
about active trading in the stock market. Suppose that Ft, the price of a stock
at time t is a martingale. Suppose that at time t we look at the entire history
of F from time 1 to t an decide an amount Mt to invest at time t. The change
in our “portfolio” (shares in 1 stock and cash) value by time t + 1 will be
Mt(Ft+1 − Ft) = MtYt+1. The portfolio value at time t will be Gt. The fact
that the values Gt also form a martingale is said to show that active investing
is no better than a “buy and hold” strategy that just produces the value Ft, or
a multiple of it depending on how much you invest. The well known book A
Random Walk on Wall Street is mostly an exposition of this point of view.
The fallacy is that investors are not only interested in the expected value, but
also in the risk.

2.13. Stopping times: We have Ω and the expanding family Ft. A stopping
time is a function τ(ω) that is one of the times 1, . . ., T , so that the event
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{τ ≤ t} is in Ft. Stopping times might be thought of as possible strategies.
Whatever your criterion for stopping is, you have enough information at time t
to know whether you should stop at time t. Many stopping times are expressed
as the first time something happens, such as the first time Xt > a. We cannot
ask to stop, for example, at the last t with Xt > a because we might not know
at time t whether Xt′ > a for some t′ > t.

2.14. Doob’s stopping time theorem for one stopping time: Because stop-
ping times are nonanticipating strategies, they also cannot make money from a
martingale. One version of this statement is that E[Xτ ] = E[X1]. The proof of
this makes use of the events Bt, that τ = t. The stopping time hypothesis is
that Bt ∈ Ft. Since τ has some value 1 ≤ τ ≤ T , the Bt form a partition of Ω.
Also, if ω ∈ Bt, τ(ω) = t, so Xτ = Xt. Therefore,

E[X1] = E[XT ]

=
T∑
t=1

E[XT | Bt]P (Bt)

=
T∑
t=1

E[Xτ ]P (τ = t)

= E[Xτ ] .

In this derivation we made use of the classical statement of the martingale
property, if B ∈ Ft then E[XT | B] = E[Xt | B]. In our B = Bt, Xt = Xτ .

This simple idea, using the martingale property applied to the partition
Bt, is crucial for much of the theory of martingales. The idea itself was first
used Kolmogorov in the context of random walk or Brownian motion. Doob
realized that Kolmogorov’s was even simpler and more beautiful when applied
to martingales.

2.15. Stopping time paradox: The technical hypotheses above, finite state
space, bounded stopping times, may be too strong, but they cannont be com-
pletely ignored, as this famous example shows. Let Xt be a symmetric random
walk starting at zero. This forms a martingale, so E[Xτ ] = 0 for any stopping
time, τ . On the other hand, suppose we take τ = min(t | Xt = 1). Then Xτ = 1
always, so E[Xτ ] = 1. The catch is that there is no T with τ(ω) ≤ T for all
ω. Even though τ < ∞ “almost surely” (more to come on that expression),
E[τ ] =∞ (explination later). Even that would be OK if the possible values of
Xt were bounded. Suppose you choose T and set τ ′ = min(τ, T ). That is, you
wait until Xt = 1 or t = T , whichever comes first, to stop. For large T , it is very
likely that you stopped for Xt = 1. Sill, those paths that never reached 1 prob-
ably drifted just far enough in the negative direction so that their contribution
to the overall expected value cancels the 1 to yield E[Xτ ′ ] = 0.

2.16. More stopping times theorem: Suppose we have an increasing family
of stopping times, 1 ≤ τ1 ≤ τ2 · · ·. In a natural way the random variables
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Y1 = Xτ1 , Y2 = Xτ2 , etc. also form a martingale. This is a final elaborate way
of saying that strategizing on a martingale is a no win game.
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