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1 Basic terminology

Here are some basic definitions and ideas of probability. These might seem dry
without examples. Be patient. Examples are coming in later sections. Although
the topic is elementary, the notation is taken from more advanced probability
so some of it might be unfamiliar. The terminology is not always helpful for
simple probability problems, but it is just the thing for describing stochastic
processes and decision problems under incomplete information information.

1.1. Do an “experiment” or “trial”, get an “outcome”, w. The set of all
possible outcomes is 2. We often call € the “probability space”. The probability
is “discrete” if Q is finite or countable (able to be listed in a single infinite
numbered list). For now, we do only discrete probability.

1.2.  The probability of a specific outcome is P(w). We always assume that

P(w) > 0 for any w € Q and that Z P(w) = 1. The interpretation of probabil-
weN

ity is a matter for philosophers, but we might say that P(w) is the probability
of outcome w happening, or the fraction of times event w would happen in a
large number of independent trials. The philosophical problem is that it may
be impossible to actually perform a large number of independent trials. Peo-
ple also sometimes say that probabilities represent our often subjective (lack of)
knowledge of future events. Probability 1 is something that is certain to happen
while probability 0 is for something that cannot happen.

1.3. “Event”: a set of outcomes, a subset of 2. The probability of an
event is the sum of the probabilities of the outcomes that make up the event
P(A) = Z P(w). We do not distinguish between the outcome w and the event

w€eA
that that outcome occured A = {w}. That is, we write P(w) for P({w}) or vice

versa. This is called “abuse of notation”: we use notation in a way that is not
absolutely correct but whose meaning is clear. It’s the mathematical version of
saying “I could care less” to mean the opposite.

1.4. Example: Toss a coin 4 times. Each toss yields either H (heads) or T
(tails). There are 16 possible outcomes, TTTT, TTTH, TTHT, TTHH, THTT,
..., HHHH. The number of outcomes is #(2) = |Q2] = 16. Normally each
outcome is equally likely, so P(w) = % for each w € Q. If A is the event that
the first two tosses are H, then

A = {HHHH, HHHT, HHTH, HHTT} .



There are 4 elements (outcomes) in A, each having probablhty ¢ Therefore

1 4 1
P(first two H) = ZP 16 %=1
weN

1.5.  Set operations: events are actually sets so set operations apply to events.
If A and B are events, the event “A and B” is the set of outcomes in both A and
B. This is the set intersection AN B. The union AU B is the set of outcomes in
A orin B (or in both). The complement of A, A¢, is the event “not A”, the set
of outcomes not in A. Events A and B are disjoint if they have no elements in
common. The empty event is the empty set, the set with no elements, (). The
probability of () should be zero because the sum that defines it has no terms:
P(0) = 0. The complement of () is Q. Events A and B are disjoint if AUB = ().
Event A is contained in event B, A C B, if every outcome in A is also in B.

1.6. Basic facts: Each of these facts is a consequence of the representation

(A) = > ca- First P(w)P(A) < P(B) if A C B. Also, P(A) + P(B) =
P(AUB) if A and B are disjoint: AU B = . From this it follows that
P(A)+ P(A°) = P(Q) =1.

1.7.  Conditional probability: The probability of outcome A given that B has

occured is

P(ANB) 1)
P(B) (

This is the percent of B outcomes that are also A outcomes. The formula is

called “Bayes’ rule”. It is often used to calculate P(A N B) once we know P(B)

and P(A | B). The formula for that is P(AN B) = P(A | B)P(B).

P(A|B) =

1.8.  Independence: Events A and B are independent if P(A | B) = P(A).
That is, knowing whether of not B occured does not change he probability of
A. In view of Bayes’ rule, this is expressed as

P(ANB) = P(A) - P(B). (2)

For example, suppose A is the event that two of the four tosses are H and B
is the event that the first toss is H. Then A has 6 elements (outcomes), B has
8, and, as you can check by listing them, AN B has 3 elements. Since each

element has probablhty 1, this gives P(AN B) = 2 while P(4) = & and
P(B) = 186 = 5. We might say “dub” for the last calculatlon since we started

the example Wlth the hypothesis that H and T were equally likely. Anyway,
this shows that (2) is indeed satisfied in this case. This example is supposed to
show that while some pairs of events, such as the first and second tosses, are
“obviously” independent, others are independent as the result of a calculation.
Note that if C is the event that 3 of the 4 tosses are H (instead of 2 for A),
then P(C) = 7c = 1 and P(BNC) = 2, because

BnC ={HHHT, HHTH, HTHH}



has three elements. Bayes’ rule (1) gives P(B | C) = 1-/2 = 3. Knowing that

there are 3 heads in all raises the probability that the first toss is H from % to

3

1-

1.9. Working with conditional probability: Conditional probability is like
ordinary (unconditional) probability. Once we know that the event B occured,
the probability of outcome w is given by Bayes’ rule

P(w)
Pw|B) =] 7B forw € B,
0 forw ¢ B.

That is, we shrink the probability space from 2 to B and “renormalize” the
probabilities by dividing by P(B) so that they again sum to one:

> Pw|B)=1.
weB

We can apply the rules of conditional probability to conditional P(w | B) prob-
abilities themselves. If P(w) = P(w | B), we can condition on another event,
C. What is the probability P of w given that C' occured? If w ¢ C it is zero. If
w € C, it is, repeated using Bayes’ rule,

Pwl|C) =

P(BNO)
= Pw|Bn().

The conclusion is that conditioning on B and then on C' is the same as condi-
tioning on BN B (B and C) all at once.

1.10.  Algebra of sets and incomplete information: A set of events, F, is an
“algebra” if

i: A € F implies that A¢ € F.
1: A€ F and B € F implies that AUB € F and ANB € F.
iti: Q€ Fand ) e F.

We interpret F as representing a state of partial information. We know whether
any of the events in F occured but we do not have enough information to



determine whether an event not in F occured. The above axioms are natural
in light of this interpretation. If we know whether A happened, we surely know
whether “not A” happened. If we know whether A happened and whether B
happened, then we can tell whether “A and B” happened. We definitely know
whether () happened (it did not) and whether Q happened (it did). Events in
F are called “measurable” or “determined in F”. You will often see the term
o—algebra, or sigma algebra, instead of just “algebra”. The distinction between
o—algebra and algebra is technical and only arises when {2 is infinite, and rarely
then.

1.11. Example: Suppose we know only outcomes only of the first two tosses.
One event measurable in F is

{HH} = {HHHH, HHHT, HHTH, HHTT} .

This is something of an abuse of notation; get used to it. An example of an
event not determined by this F is the event of no more than one H:

A={TTTT, TTTH, TTHT, THTT, HTTT} .

Just knowing the first two tosses does not tell you with certainty whether the
total number of heads is less than two.

1.12.  Another example: Suppose we know only the results of the tosses but
not the order. This might happen if we toss 4 identical coins at the same time.
In this case, we know only the number of H coins. Some measurable sets are
(with an abuse of notation)

(4 = {HHHH}
{3} = {HHHT, HHTH, HTHH, THHH}

{0}

{TTTT}

. There

are other events measureable in this algebra, such as “less than 3 H”, but, in
some sense, the events listed “generate” the algebra.

ol w

1
The event {2} has 6 outcomes (list them), so its probability is 6- 16 =

1.13. Terminology: what we call “outcome” is sometimes called “random
variable”. I don’t use this because it can be confusing in that we often think of
variables as real or complex numbers. A “real valued function” of the random
variable w is a real number X for each w, written X (w). The most common abuse
of notation in probability is to write X instead of X (w). We will do this most of
the time, but not just yet. We often think of X as a random number whose value
is determined by the outcome (random variable) w. A common convention is
to use upper case letters for random numbers and lower case letters for specific



values of that variable. For example, the “cumulative distribution function”
(CDF), F(x) is the probability that X < z, that is F(z) = Z P(w).
X(w)<z

1.14. Informal event terminology: We often describe events in words. For
example, we might write P(X < x) where, strictly, we might be supposed to say
B, = {w| X(w) <} then P(X =leqz) = P(B,). If there are two functions, X3
and X5, we might try to calculate, for example, P(X; = X3), which is actually
the probability of the set of w so that X;(w) = Xa(w).

1.15. Measurable: A function (of a random variable) X (w) is measurable
with respect to the algebra F if the value of X is completely determined by
the information in F. To give a mathematical definition, for any number, z
we can consider the event that X = z, which is 4, = {w @ X(w) = z}.
In discrete probability, A, will be the empty set for almost all z values and
be another set only for those values of x actually taken by X(w) for one of
the outcomes w. The function X (w) is “measurable with respect to F if the
sets A, are all measurable. People often write X € F (an abuse of notation)
to indicate that X is measurable with respect to F. In the second example
above, the function X = number of H minus number of T is measurable, while
the function X = number of T before the first H is not.

1.16.  Generating an algebra of sets: Suppose there are events Ay, ..., Ay that
you know. The algebra, F, generated by these sets is the algebra that expresses
the information about the outcome you gain by knowing these events. One
definition of F is that an event A is in F if A can be expressed in terms of the
known events A; using the set operations intersection, union, and complement
a number of times. For example, we could define an event A by saying “w is in
A; and (As or A3) but not As or As”. An equivalent to saying that F is the
smallest algebra of sets that contains the known events A;. Obviously (think
about this!) any algebra that contains the A; contains any event described by
set operations on the Aj;, that is the definition of algebra of sets. Also the sets
defined by set operations on the A; form an algebra of sets. For example, if A
is the event that the first toss is H and A, is the event that the second toss is
H, then A; and A, generate the algebra of events determined by knowing the
results of the first two tosses. This is example 1 above.

1.17. Generating by a function: A function X (w) defines an algebra of
sets generated by the sets A,. This is the smallest algebra, F, so that X is
measurable with respect to F. Example 2 above has this form. We can think of
F as being the algebra of sets defined by statements about the values of X (w).
For example, one A € F would be the set of w with X either between 4 and 5
or greater than 11.

We write Fx for the algebra of sets generated by X and ask, what it means
that another function of w, Y (w), is measurable with respect to Fx. The
information interpretation of Fx says that Y € Fx if knowing the value of X (w)



determines the value of Y (w). This means that if w; and wy have the same X
value (X(w;) = X(w2)) then they also have the same Y value. Said another
way, if A, is not empty, then there is some number, u(z), so that Y (w) = u(x)
for every w € A,. This means that Y (w) = u(X(w)) for all w € Q). Altogether,
saying Y € Fx is a fancy way of saying that Y is a function of X. Of course,
u(z) only needs to be defined for those values of = actually taken by the random
variable X.

For example, if X is the number of H in 4 tosses, and Y is the number of
H minus the number of T, then, for any 4 tosses, w, Y (w) = 2X(w) — 4. That
is, u(x) = 22 — 4.

1.18.  Expected value: A random variable (actually, a function of a random
variable) X (w) has expected value

@,ega€f)

(Note that we do not write w on the left. We think of X as simply a random
number and w as a story of how X was generated.) This is the “average” value
in the sense that if you could perform the “experiment” of sampling X vary
many times and average the resulting numbers, you would get roughly E[X].
This is because P(w) is the fraction of the time you would get w and X (w) is
the number you get for w. If X;(w) and X3(w) are two random variables, then
E[X; + X3] = E[X1] + E[X32]. Also, E[cX] = cE[X] if ¢ is a constant (not
random).

1.19. Best approximation property: If we wanted to approximate a random
variable, X, (function X (w) with w not written) by a single non random number,
x, what value would we pick? That would depend on the sense of “best”. One
such sense is “least squares”, choosing x to minimize the expected value of
(X — ). A calculation, which uses the above properties of expected value,
gives

E [(X - x)ﬂ = EB[X?-2Xz+ 27
= FE[X? - 2zE[X]+2%.
Minimizing this over x gives the optimal value

Zopt = E[X]. (3)

1.20. Conditional expectation, elementary version: There are two senses of
the term “conditional expectation”. We start with the original sense then turn
to the related but different sense often used in stochastic processes. Conditional
expectation is defined from conditional probability in the obvious way

E[X|B] = ZX P(w|B) .



For example, we can caluclate
E[#of H in 4 tosses | at least one H] .

Write B for the event {at least one H}. Since only w =TTTT does not have at
least one H, |B| =15 and P(w | B) = {5 for any w € B. Let X be the number
of H. Unconditionally, E[H] = 2 (see below). This means that

1
— X(w)=2.
16
e
Note that X (w) =0 for all w ¢ B (only TTTT), so that implies that
1
—_— X =
LY X@PW) = 2
weB
15 1
weB
1 2-16
75 2 XWPW) = ==
weB
32
EIX|B = [ = 2+.133...

Knowing that there was at least on H increases the expected number of H by
133.. ..

1.21. Conditional expectation, modern version: The modern conditional
expectation starts with an algebra, JF, rather than just a set. It defines a
(function of a) random variable, Y (w) = E[X | F], that is measurable with
respect to F even though X is not. This function represents the best prediction
of X given the information in F. In the elementary case (paragraph 1.20), the
information is the occurance or non occurance of a single event, B. In this case,
the algebra, Fp consists only of the sets B, B¢, (), and Q. The modern definition
gives a function Y (w) so that

_ [ EIX|B] ifweB,
Y(w)_{E[X|BC] if w¢ B.

Make sure you understand the fact that this two valued function Y is measurable
with respect to Fp.

Only slightly more complicated is the case where F is generated by a “par-
tition” of €. A partition is a collection of events By, ..., B,, so that each
outcome, w is in one and only one of the events. The sets {4}, {3}, ..., {0}
in paragraph 1.12 form a partition, as do the sets A, in paragraph 1.15 (if you
keep only the A, that are not empty). The algebra of sets generated by the sets
in a partition consists of unions of sets in the partition (think this through).
The conditional expectation Y (w) = E[X | F] is defined to be

Y(w)=E[X | B;] ifweB; ,



where E[X | B;] is in the elementary sense of paragraph 1.20. This is well
defined because there is exactly one B; for each w. A single set B defines a
partition: By = B, By = B¢, so this agrees with the earlier definition in that
case.

Finally, as long as the probability space, €2 is finite, any algebra of sets is
generated by some partition. The events in the partition are events in F that
cannot be subdivided within F.

1.22. Best approximation property: Suppose we have a random variable,
X (w), that is not measurable with respect to the algebra of sets F. That is,
the information in F does not completely determine the values of X. The
conditional expectation, Y (w) = E[X | F], has the property that it is the best
approximation to X among functions measurable with respect to Y, in the least
squares sense. That is, if Y € F, then

E [(f/ - X)Q} > B[V - X)2] .

In fact, this later will be the definition of conditional expectation in situations
where the partition definition is not directly applicable. Suppose F is generated
by the partition B, ..., B,. Any random variable Y € F is determined by it’s

(constant) values on the sets By: Y (w) = g for wy € By. Just as in paragraph
1.19, the best value for g is E[X | B;].

2 Markov Chains, I

Markov! chains form a simple class of stochastic processes. They seem to rep-
resent a good level of abstraction and generality: many practical models are
Markov chains. Here we discuss Markov chains in “discrete time” (the continu-
ous time version is called a “Markov process) and having a finite “state space”
(see below). We also suppose that the “transition probabilities” are stationary,
i.e. independent of time.

2.1. Time: The time variable, ¢, will be an integer representing the number
of time units from a starting time. The actual time between t and ¢ + 1 could
be a nanosecond (for modeling computer communication networks) or a month
(for modeling bond rating changes), or whatever.

2.2. State space: At time ¢ the system will be in one of a finite list of states.
This set of states is the “state space”, S. To be a Markov chain, the “state”
should be a “complete” description of the actual state of the system at time ¢.
This means that it should contain any information about the system at time ¢
that helps predict the state at future times ¢t + 1, ¢ + 2, ... . This will be more

IThe Russian mathematician A. A. Markov was active in the last decades of the 19t
century. He is known for his path breaking work on the distrubution of prime numbers as well
as on probability.



clear soon. The state at time ¢ will be called X (t) or X;. Eventually, there
may be an w also, so that the state is a function of ¢ and w: X (¢,w) or X;(w).
The states may be called sy, ..., s;m , or simply 1,2, ..., m. depending on the
context.

2.3. Path space: The sequence of states X1, Xo, ..., X7, is a “path”. The
set of paths is “path space”. This path space is the probability space, €2, for
the Markov chain. An outcome is completely determined by the sequence fo
states in the path. That is, in the case of a Markov chain, there might not be
a distinction between the path X = (X1,...,X,,) and the outcome w. We will
soon have a formula for the probablity of any path X. An event is a collection
of paths such as the set of all paths that do not contain state sg or the set
of paths that end in X7 = s;, etc. The number of paths of length T is m7T,
where m = |S| is the number of states. As a practical matter this (albeit finite)
number is often too large for computation. For example, for 7 states and 10
steps (m = 7, T = 10) we have |Q| = 70 = 28,2475,294 ~ 3 - 10%. A 1GHz
computer would take at least an hour to list and calculate the probability of
each path.

2.4. Transition probabilities: The transition probability, Pjx, is the proba-
bility of going from state j to state k in one step. That is:

ij:P(Xt+1:k|Xt:j) .

The Markov chain is “stationary” if the transition probabilities Pj; are inde-
pendent of ¢. Each transition probability Pj; is between 0 and 1, with values 0
and 1 allowed, though 0 is more common than one. Also, with j fixed, the P
must sum to 1 (summing over k) because k = 1, 2, ..., m is a complete list of
the possible states at time ¢ + 1.

2.5. Transition matrix: These transition probabilities form an m x m ma-
trix, P (an unfortunate conflict of notation). The (j, k) entry of P being the
transition probability Pj;. The sum of the entries of the transition matrix P
in row j is Zk Pj, = 1. A matrix with these properties: no negative entries,
all row sums equal to 1, is a “stochastic matrix”. Any stochastic matrix can be
the transition matrix for a Markov chain. Methods from linear algebra often
enter into the analysis of Markov chains. For example, the time s transition
probability
e = P(Xews =k | X¢ = j)

is the (j, k) entry of P* the s'® power of the transition matrix (explination
below). The “steady state” probabilities form an eigenvector of P.

2.6. Path probabilities: The Markov property allows us to compute the
probability of any path or portion of a path by multiplying transition probabili-
ties. For example, suppose we want the probability of the successive transitions
i — j — k. Thisis P(X;y1 = j and Xiyo = k | Xy = ¢). Using the conditional



Bayes’ rule, this is
P(Xt+2:k|Xt+1 :] andXt:i)'P(Xt+1 :j‘Xt:Z)

Here the Markov property comes in. It states that if we know X1, the value
of X, is irrelevent in predicting X;yo. That is

P(Xt+2:k‘Xt+l :jandXt:i):P(Xt+2:k‘Xt+1 :]):ij
Combining the above two facts, we get
P(’LH]*)]C) = P(Xt+1:jandXt+2:k:|Xt:i)
= Pij . ij .

To give the probability of a whole path, X = (X3,..., Xr), we have to give
the “initial distribution” probabilities for X; and the transition probabilities.
The transition probabilities take care of the rest. We will call the probabilities
for X; f' or f(1). That is, P(X; = j) = fjl. The latter may also be written
f(4,1). In general we use notation f} = P(X; = j). Using /! and the Pj, we
can calculate the probabilities of paths:

P(Xy=jand X, =k) = f] - Py,
P(Xy=jand Xy =k and X3 =1) = f} - Py - Pji, ,
and so on. Expressed slightly differently, we have

P(X):f‘;(l'PXLXz' .PXT—hXT' (4)

2.7.  Example 3, coin flips: The state space has m = 2 states, called U (up)
and D (down). H and T would conflict with T" being the length of the chain.
Let us consider paths of length 7" = 50. Example 1 has paths of length 4. Let
us suppose that a coin starts in the U position. At every time step, the coin
turns over with 20% probability. The transition probabilities are Pyy = .8,
Pyp = .2, Ppy = .2, Ppp = .8. The transition matrix is (taking U for 1 and D

for 2):
8 .2
r=(3 %)
For example, we can calculate

s o o [ 68 .32 i po po [ 5648 4352
P=r P‘(.sz .88) and P7=F P‘(.4352 5648 )
This implies that P(X5; =U) = P(X; =U — X5 =U) = P5;; = .5648

2.8. Example 4, hidden Markov model: There are two coins, F (fast) and
S (slow). Either coin will be either U or D at any given time. Ounly one coin

10



is present at any given time but sometimes the coin might be replaced (F for
S or vice versa) without changing its U-D status. The F coin has the same
U-D transition probabilities as example 3. The S coin has U-D transition

probabilities:
9 1
.05 .95

The probability of coin replacement at any given time is 30%. The replacement
(if it happens) is done after the (possible) coin flip without changing the U-D
status of the coin after that flip. The Markov chain has 4 states, which can be
numbered (somewhat arbitrarily) 1: UF, 2: DF, 3: US, 4: DS. States 1 and
3 are U states while states 1 and 2 are F states, etc. The transition matrix is
4 x 4. We can calculate, for example, the (non) transitin probability for UF —
UF. We first have a U — U (non) transition then an F — (non) transition. The
probability is then P(U — U | F) - P(F — F) = .8-.7 = .56. The other entries
can be found in a similar way. The transitions are:

UF —-UF UF—-DF UF—-US UF—DS
DF —-UF DF —DF DF—-US DF — DS
Us—-UF US—DF US—-US US— DS
DS —-UF DS—DF DS—-US DS—DS

The resulting transition matrix is

St o
SRS RN RN
— 00 o
NI IRN RN
SGo o
— 00 b

.05 - 95 - .05- 95 -

If we start with UF and want to know the probability of being D after 4 time
periods, the answer is P}, + P} because states 2 = DF and 4 = DS are the
two D states.

2.9. Example 5, incomplete state information: In the model of example 4
we might be able to observe the U-D status but not F-S. Suppose Y, = U if
X, =UFor X, =UD, and Y; = D if X;, = DF or X; = DD. Then the
sequence Y; is a stochastic process but it is not a Markov chain. We can better
predict U « D transitions if we know whether the coin is F or S, or even if we
have a basis for guessing. For example, suppose Yg = U and we want to guess
whether Yy will again be U. If Y7 is D then we are more likely to have the F
coin so a Yg = U — Yy = D transition is more likely. That is, with Yg fixed,
Y7 = D makes it less likely to have Yo = U. This is a violation of the Markov
property brought about by incomplete state information. Models of this kind
are called “hidden markov” models. We suppose that there is a Markov chain
but that we have incomplete information about it. Statistical estimation of the
unobserved variable is a topic for another day.
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