Stochastic Calculus, Fall 2002 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc/)

Practice Final Exam questions.

Given December 11, last revised December 12

Focus: Review

This should help you study for the final exam. There are more questions than could probably be on the actual final in order to review more material.

- 1. In each part, state whether the statement is true or false and give a short explination with a reason it is true (maybe something short of a full mathematical proof) or a counterexample.
 - **a.** Suppose $dX_t = (X_t^3 1)dt + X_t^2 dW_t$ with $X_0 = 2$. It is possible to compute an accurate approximation to $E[X_T^2]$ with T = 3 without simulating a random process.
 - **b.** Suppose $X(\omega)$ and $Y(\omega)$ are functions of the random variable ω defined for $\omega \in \Omega$, a probability space. Let \mathcal{F}_X and \mathcal{F}_Y be the σ -algebras generated respectively by X and Y. Let $\mathcal{F}_{X,Y}$ be the σ -algebra generated by both X and Y. Then $\mathcal{F}_{X,Y} = \mathcal{F}_X \cup \mathcal{F}_Y$.
 - **c.** If $(X_t^{(1)}, X_t^{(2)})$ is a two component Markov process, then $X_t^{(1)}$ separately is a one component Markov process.
 - **d.** If f(x,t) satisfies the PDE

$$\partial_t f + (2 + \sin(x))\partial_x^2 f = 0 ,$$

and f is bounded, then

$$f(x,t) \le \max_{x'} f(x',T) ,$$

whenever T > t.

- e. If X_t and Y_t are independent Brownian motions, then $X_T^2 Y_T \int_0^T Y_t dt$ is a martingale.
- **f.** If $\sigma_t \in \mathcal{F}_t$ and $dX_t = \sigma_t dW_t$ then X_t is a Markov process.
- **g.** If there is a function b(x) so that $\sigma_t = b(X_t)$ and $dX_t = \sigma_t dW_t$, then X_t is a Markov process.
- **h.** If X is a two dimensional diffusion process that satisfies $dX_t = a(X_t)dt + \sigma(X_t)dW_t$, where W_t is a pair of independent Brownian motions, and $dY_t = a(Y_t)dt + \sigma(Y_t)QdW_t$ where Q is a 2 × 2 orthogonal matrix, then the probability measure on the path space $C([0,T] \to R^2)$ defined by X_t and Y_t are the same even though $X_t \neq Y_t$ almost surely.

- 2. Suppose X_t is standard Brownian motion and that \mathcal{G} is the σ algebra generated by X_1 and X_2 (X evaluated at times t = 1 and t = 2). Let $Y = \int_0^3 X_t dt$. Write a formula for the conditional PDF $u(y \mid \mathcal{G}_0)$. This will be a function of the three variables y, x_1 , and x_2 . Hint: You know that the conditional probability densities multivariate normals is normal, so figure out something about the joint PDF of X_1, X_2 , and Y. You need not write the joint PDF in complete detail.
- **3.** Suppose $(X_1, X_2, X_3) \in \mathbb{R}^3$ is a three dimensional multivariate normal with $E[X_1] = 1$, $E[X_2] = -1$, and $E[X_3] = 3$ and covariance matrix

$$C = \begin{pmatrix} 5 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} .$$

Write a formula for the joint PDF, $u(x_1, x_2, x_3)$. Hint: $C^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 5 \end{pmatrix}$.

- 4. Suppose $dX_t = \mu X_t dt + \sigma X_t dW_t$ where μ and σ are constants. Suppose $V(x) = \max(x K, 0)$ and that we want to evaluate $E[V(X_T)M_T]$ where $M_T = \exp(-r \int_0^T X_t dt)$. Write a PDE we could use.
- **5.** We wish to solve the PDE $\partial_t f + \frac{x^2+y^2}{2}\partial_x^2 f + (x-y^2)\partial_y f + ryf = 0$, where r is some constant, and f(x, y, T) = V(x, y) is given. Write an SDE and express f(x, y, 0) as the expectation of some function of the path X_t, Y_t .
- **6.** Suppose $dX_t = \sigma X_t dW_t$ with constant σ and $X_0 = 1$. Express

$$Y_T = \int_0^T X_t dX_t$$

as a function of X_T and the random variable

$$U_T = \int_0^T X_t^2 dt \; .$$

Verify that $E[Y_T] = 0$ (why is Y_T a martingale?) by calculating the expected values of the two terms $f(X_t)$ and U_T .

- 7. The state of a discrete time finite state space Markov chain is X_t at time t = 0, 1, 2, ...The state space is $S = \{0, 1, ..., n\}$. For $x \neq 0, n$ we the transition probabilities are $\frac{1}{3}$ to increase by one $X \to X + 1$, decrease by one, or stay the same. When X = 0, the transition probabilities are $\frac{1}{2}$ to go to one $X_t = 0 \to Xt + 1 = 1$ or stay the same. For X = n the transition $X_t = n \to X_{t+1} = n$ has probability $\frac{2}{3}$ and the transition $X_t = n \to X_{t+1} = n - 1$ has probability $\frac{1}{3}$.
 - **a.** For n = 4, write the 4×4 transition matrix.

- **b.** For n = 4, use two matrix multiplications to calculate all the time 4 transition probabilities $a_{jk} = P(X_{t+4} = k \mid X_t = j)$. (This might be too much arithmetic for the actual exam.)
- c. We construct a sequence of stopping times $\tau_1 = \min(t \text{ such that } X_t = 0 \text{ or } n)$, and $\tau_{k+1} = \min(t > \tau_k \text{ such that } X_t = 0 \text{ or } n)$. The sequence $Y_k = X_{\tau_k}$ consists of the 0 and n values of X_t with all other values taken out. Show that the sequence Y_k is a two state space Markov chain. This fact is a special case of what is called the "strong Markov property".
- **d.** Calculate the 2 × 2 transition matrix for the Y_k chain. To make it easier, replace the X transition probabilities at 0 by $P(X_{t+1} = 0 | X_t = 0) = \frac{2}{3}$ and $P(X_{t+1} = 1 | X_t = 0) = \frac{1}{3}$. This makes the X transition matrix (and therefore the Y transition matrix) symmetric. Do not assume n = 4.
- 8. Let V_t satisfy the familiar SDE $dV_t = -\gamma V_t dt + \alpha dW_t$. Let be the first hitting time for $0, \tau = \min(t \text{ such that } V_t = 0.$ Let $s = \min(\tau, 5)$. Let \mathcal{F}_s be the σ -algebra generated by all V_t for $t \leq s$. Calculate $G = E[V_5^2 | \mathcal{F}_s]$ by showing that it is given as a simple function of one random variable.
- **9.** Let X_t be Brownian motion starting at a point $X_0 > 0$ and let A_T be the event $X_t > 0$ for all $t \in (0, T)$. Let $u_0(x, t)$ be the probability density for paths in A_t to land at x at time t: $u_0(x, t)dx = P(X_T \in A_t \text{ and } x < X_t < x + dx)$.
 - **a.** Write the partial differential equation we can solve to determine u(x,t) including initial conditions and boundary conditions.
 - **b.** Write a formula for the solution of this PDE as a sum (difference) of two gaussian functions.
 - c. Suppose instead that $dX_t = vdt + dW_t$ (Brownian motion with constant drift velocity, v). Write the PDE (with initial and boundary conditions) that determines $u_v(x,t)dx = P(X_T \in A_t \text{ and } x < X_t < x + dx).$
 - **d.** Use Girsanov's theorem to express $u_v(x,t)$ in terms of $u_0(x,t)$.
- 10. Suppose $W_t^{(1)}$ and $W_t^{(2)}$ are Brownian motions with correlation coefficient ρ . For any two random variables X and Y, $\rho(X, Y) = \operatorname{cov}(X, Y)/\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}$. Here, we suppose that $\rho(W_t^{(1)}, W_t^{(2)})$ is a constant independent of t. We have the pair of SDE's

$$dX_t = r_t X_t dt + \sigma X_t dW_t^{(1)}$$

$$dr_t = \mu(\overline{r} - r_t) dt + \alpha \sqrt{r_t} dW_t^{(2)}$$

We want to compute

$$F = E[V(X_T)e^{-\int_0^T r_t dt}].$$

Define a quantity f(x, r, t) as a conditional expectation value and give a backward equation satisfied by f so that f(x, r, 0) is F.