Assignment 8.

Given November 7, due November 14 Last revised November 8.

Focus: Ito calculus

1. We will calculate the first four Picard iterates for the $\operatorname{SDE} d X_{t}=X_{t} d W_{t}$, with $X_{0}=1$. These are given by $X_{t}^{(0)}=1$ for all $t \geq 0$, and

$$
X_{t}^{(k+1)}=1+\int_{0}^{t} X_{s}^{(k)} d W_{s}
$$

This is partly to provide practice using the Ito calculus on the various stochastic integrals that come up.
a. Compute $X_{t}^{(1)}$.
b. Compute $X_{t}^{(2)}$. It will be simpler to compute

$$
Y_{t}^{(2)}=X_{t}^{(2)}-X_{t}^{(1)}=\int_{0}^{t}\left(X_{s}^{(1)}-X_{s}^{(0)}\right) d W_{s}=\int_{0}^{t} Y_{s}^{(1)} d W_{s}
$$

c. The exact solution of the SDE is $X_{t}=e^{W_{t}} e^{-t / 2}$. Expand $e^{W_{t}}$ and $e^{-t / 2}$ is Taylor series in W_{t} and t respectively, keeping terms up to and including $O(t)$. Multiply these to get a short time approximation to X_{t} up to $O(t)$. Show that this agrees with your answer to part b.
d. Calculate $Y_{t}^{(3)}=\int_{0}^{t} Y_{s}^{(2)} d W_{s}$. To simplify the answer, you need a relationship between $\int_{0}^{t} W_{s} d s$ and $\int_{0}^{t} s d W_{s}$.
e. Calculate $Y_{t}^{(4)}=\int_{0}^{t} Y_{s}^{(3)} d W_{s}$. Combine with previous results to get $X_{t}^{(4)}$.
f. Extend the calculation of part c to get an approximation containing all terms up to and including $O\left(t^{2}\right)$. Check that this agrees with your answer to part e.
2. a. Using our bounds for $X^{(k+1)}-X^{k}$ from Lecture 7, paragraph 1.5 with the constant in (3), show that $X_{t}-X_{t}^{(k)}=O\left(t^{(k+1) / 2}\right)$. For this you will need to know that

$$
\sum_{j=k}^{\infty} z^{j}=\frac{z^{k}}{1-z}=O\left(z^{k}\right), \quad \text { as } z \rightarrow 0
$$

b. Justify the approximation $X_{t+\Delta t}=X_{t}+\sigma\left(X_{t}\right) \Delta W_{\Delta t}+O(\Delta t)$. Here, $\Delta W_{\Delta t}=$ $W_{t+\Delta t}-W_{t}$. This uses part a and facts about Ito integrals. Hint: it might be easier notationally if you replace t by 0 and Δt by t.
c. Justify the approximation

$$
X_{t+\Delta t}=X_{t}+\sigma\left(X_{t}, t\right) \Delta W_{\Delta t}+a\left(X_{t}, t\right) \Delta t+\frac{1}{2} \sigma(X, t) \partial_{X} \sigma\left(X_{t}, t\right)\left(\Delta W_{\Delta t}^{2}-t\right)+O\left(t^{3 / 2}\right)
$$

This requires the approximation in part b and the technique behind it.
3. Suppose $d X_{t}=a\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d W_{t}$ and $f(x, t)=E_{x, t}\left[V\left(X_{T}\right)\right]$. Use the fact that $f_{t}=f\left(X_{t}, t\right)$ is a martingale and Ito's lemma for solutions of SDEs to find a partial differential equation $\partial_{t} f+\cdots=0$. This is another in our collection of useful backward equations.
4. Derive the Black Scholes formula for European option pricing. For this, we need the cumulative distribution of a standard normal random variable. This is, for $Z \sim \mathcal{N}(0,1)$,

$$
N(z)=P(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{y=-\infty}^{z} e^{-y^{2} / 2} d y
$$

Many integrals involving gaussians can be expressed in terms of N. For example, if $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $P(X \leq \mu+z \sigma)=N(z)$. In earlier assignments, we have used the fact that $E\left[e^{X}\right]$ can be calculated by writing the integral, completing the square in the exponent, and recognizing this as another gaussian integral.
a. A geometric Brownian motion satisfies the SDE $d S_{t}=r S d t+\sigma S_{t} d W_{t}$. Note that what we usually call σ is now σS_{t}. Compute Y_{t}, the ordinary calculus guess at the solution (if the solution if W_{t} were a differentiable function of t). Use the Ito calculus to find and verify the correct solution in the form $S_{t}=A(t) Y_{t}$.
b. Find an expression for S_{T} in terms of S_{t} and $W_{T}-W_{t}$. This is just a line of algebra.
c. For $f(S, t)=E\left[V\left(S_{T}\right) \mid \mathcal{F}_{t}\right]$, write the backward equation for f. This asks you to translate the general result in question 3 into a more specific equation that holds for geometric Brownian motion. The resulting equation is called the "Black Scholes" equation.
d. For any final payout function $V(s)$, write a formula for $f(S, t)$ as the expected value of some function of a gaussian random variable whose mean and variance depend on t in a simple way. This is an application of the result of part b and the definition of f. It does not use the backward equation.
e. For $V(s)=\max (s-K, 0)=(s-K)_{+}$, compute the integral in part d explicitly in terms of the N function. This is the "Black Scholes formula".
f. Verify by direct differentiation that the formula satisfies the backward equation.
5. Use Ito's lemma to show that each of the following is a martingale. Comment on the difficulty of doing it this way or directly, as in an earlier assignment.
a. $\quad X_{t}=e^{k^{2} t / 2} \sin \left(k W_{t}\right)$
b. $\quad Y_{t}=W_{t}^{4}-6 \int_{0}^{t} W_{s}^{2} d s$.

