Stochastic Calculus, Fall 2002 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc/)
Assignment 8.

Given November 7, due November 14 Last revised November 8.

Focus: Ito calculus

1. We will calculate the first four Picard iterates for the SDE dX; = X, dW;, with X, = 1.
These are given by Xt(o) =1 for all t > 0, and

t
X5 =14 /0 X®aw, .

This is partly to provide practice using the Ito calculus on the various stochastic
integrals that come up.
(1)
a. Compute X; .
b. Compute Xt(2). It will be simpler to compute

v =x® - xV= / t(Xs(l) — XNaw, = / t yWdw, .
0 0
c. The exact solution of the SDE is X; = e"te=%/2. Expand "t and e */? is Taylor
series in W, and t respectively, keeping terms up to and including O(t). Multiply
these to get a short time approximation to X; up to O(t). Show that this agrees
with your answer to part b.

d. Calculate Y;(?’) = [y Y2dW,. To simplify the answer, you need a relationship
between [3 W,ds and [; sdW.

. Calculate Yt(4) = [¢ Y3 dW,. Combine with previous results to get Xt(A‘).
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Extend the calculation of part ¢ to get an approximation containing all terms up to
and including O(#?). Check that this agrees with your answer to part e.

2. a. Using our bounds for X**1) — X* from Lecture 7, paragraph 1.5 with the constant in
(3), show that X; — X* = O(t®+1/2). For this you will need to know that
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b. Justify the approximation X, an; = X; + 0(X;)AWay + O(At). Here, AWy, =
Wiiae — Wy This uses part a and facts about Ito integrals. Hint: it might be
easier notationally if you replace ¢ by 0 and At by t.



c. Justify the approximation
1
Xiar = Xeto (Xo, ) AWarta(Xp, ) At 5o (X, 1)0x o (X, t) (AWZ,—1)+O(t*?) .

This requires the approximation in part b and the technique behind it.

3. Suppose dX; = a(Xy, t)dt + o(X, t)dW, and f(x,t) = E, [V (Xr)]. Use the fact that
fi = f(Xy,t) is a martingale and Ito’s lemma for solutions of SDEs to find a partial
differential equation 9, f +--- = 0. This is another in our collection of useful backward
equations.

4. Derive the Black Scholes formula for European option pricing. For this, we need the
cumulative distribution of a standard normal random variable. This is, for Z ~ N (0, 1),

N(z)=P(Z <=z eV Pdy .
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Many integrals involving gaussians can be expressed in terms of N. For example, if
X ~ N(p,0?%), then P(X < p+ z0) = N(2). In earlier assignments, we have used the
fact that E[e*] can be calculated by writing the integral, completing the square in the
exponent, and recognizing this as another gaussian integral.

a. A geometric Brownian motion satisfies the SDE dS; = rSdt + 05;dW,. Note that
what we usually call ¢ is now ¢.5;. Compute Y;, the ordinary calculus guess at
the solution (if the solution if W; were a differentiable function of ¢). Use the Ito
calculus to find and verify the correct solution in the form S; = A(t)Y;.

b. Find an expression for St in terms of S; and Wy —W,. This is just a line of algebra.

c. For f(S,t) = E[V(St) | Fi], write the backward equation for f. This asks you
to translate the general result in question 3 into a more specific equation that
holds for geometric Brownian motion. The resulting equation is called the “Black
Scholes” equation.

d. For any final payout function V(s), write a formula for f(S,t) as the expected
value of some function of a gaussian random variable whose mean and variance
depend on t in a simple way. This is an application of the result of part b and
the definition of f. It does not use the backward equation.

e. For V(s) = max(s — K,0) = (s — K),, compute the integral in part d explicitly in
terms of the N function. This is the “Black Scholes formula”.

f. Verify by direct differentiation that the formula satisfies the backward equation.

5. Use Ito’s lemma to show that each of the following is a martingale. Comment on the
difficulty of doing it this way or directly, as in an earlier assignment.

a. X, = ek t/2 sin(kW;)
t

b. Y= Wi - 6/ W2ds.
0



