Assignment 5.

Given October 19 due October 24 Last revised, October 23.

Objective: Simple martingales and PDE's for Brownian motion

- 1. Suppose h(x) has h'(x) > 0 for all x so that there is a unique x for each y so that y = h(x). Consider the process $Y_t = h(X_t)$, where X_t is standard Brownian motion. Suppose the function h(x) is smooth. The answers to the questions below depend at least on second derivatives of h.
 - **a.** With the notation $\Delta Y_t = Y_{t+\Delta t} Y_t$, for a positive Δt , calculate a(y) and b(y) so that $E[\Delta Y_t \mid \mathcal{F}_t] = a(Y_t)\Delta t + O(\Delta t^2)$ and $E[\Delta Y_t^2 \mid \mathcal{F}_t] = b(Y_t)\Delta t + O(\Delta t^2)$.
 - **b.** With the notation $f(Y_t, t) = E[V(Y_T) \mid \mathcal{F}_t]$, find the backward equation satisfied by f.
 - **c.** Writing u(y,t) for the probability density of Y_t , use the duality argument to find the forward equation satisfied by u.
 - **d.** Write the forward and backward equations for the special case $Y_t = e^{cX_t}$. Note (for those who know) the similarity of the backward equation to the Black Scholes partial differential equation. We will get it exactly right soon.
- **2.** Use a calculation similar to the one we used in class to show that $Y_T = X_T^4 6 \int_0^T X_t^2 dt$ is a martingale. Here X_t is Brownian motion.
- 3. Show that $Y_t = \cos(kX_t)e^{k^2t/2}$ is a martingale. Hint 1: It suffices to show that $E[Y_{t+\Delta t} \mid \mathcal{F}_t] = Y_t + O(\Delta t^2)$, which is a calculation in this case. Now, to show $E[Y_{t'} \mid \mathcal{F}_t] = Y_t$ for t' > t, divide the interval (t, t') into n intervals of size $\Delta t = (t' t)/n$ and use the tower property for the expanding family $\mathcal{F}_{t_k} \subset \mathcal{F}_{t_{k+1}}$, with $t_k = t + k\Delta t$. This will show that $E[Y_{t'} \mid \mathcal{F}_t] = Y_t + O(n\Delta t^2)$. The error term goes to zero as $n \to \infty$. Hint 2: Use the fact that a certain function satisfies the backward equation.
- **4.** Fourier solution of the heat equation
 - **a.** Show that

$$\int_{-\pi/2}^{\pi/2} \cos(kx) \cos(jx) dx = \frac{\pi}{2} \delta_{jk}$$

if j and k are positive integers. This is the "orthogonality" relation between cosines.

b. Suppose $f(x) = \sum_{k=1}^{\infty} a_k \cos(kx)$ (a "Fourier series"). Show that

$$a_j = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \cos(jx) f(x) dx ,$$

assuming the sum converges rapidly enough. The numbers a_j are the "Fourier coefficients" of f.

- c. Find a formula for $\int_{-\pi/2}^{\pi/2} \cos(jx) u(x,t) dx$, where u(x,t) is the density for Brownian motion X_t with $X_0 = 0$ and $\tau > t$ with τ being the hitting time of $\pm \frac{\pi}{2}$. This can be done by using the result of question 3 and the observation that $\int \cos(jx) u(x,t) dx = E[\cos(jY_t)] = E[\cos(jX_t)]$ (Y_t being the stopped Brwonian motion).
- **d.** This gives a representation $u(x,t) = \sum_{k=1}^{\infty} a_k(t) \cos(kx)$. Show by direct calculation that each of the terms satisfies the u forward equation and boundary conditions.
- **e.** Conclude that for large t, $u(x,t) \approx e^{-t/2} \cos(x)$ and $P(\tau > t) \approx e^{-t/2}$.