## Assignment 3.

Given September 20, due September 26.
Last revised, September 23.

Objective: Conditioning and Markov chains, II.

1. Suppose an $n \times n$ matrix, $A$, has $n$ linearly independent right eigenvectors (column vectors) with corresponding eigenvalues $\lambda_{j}$ : $A r_{j}=\lambda_{j} r_{j}$. Suppose the the corresponding left (row vector) eigenvectors are $L_{j}: l_{j} A=\lambda_{j} l_{j}$. Suppose that the $r_{j}$ and $l_{k}$ have been normalized to be biorthogonal: $l_{j} r_{k}=\delta_{j k}$, where $\delta_{j k}=1$ if $j=k$ and $\delta_{j k}=0$ if $j \neq k$ (this is the "Kronecker delta"; the $\delta_{j k}$ are the entries in the identity matrix.).
a. Show that $A=\sum_{j=1}^{n} \lambda_{j} r_{j} l_{j}$. Note that each term in the sum is an $n \times n$ matrix. In the other order, $l_{j} r_{j}$ is a $1 \times 1$ matrix.
b. Find a similar expression for $A^{t}$, the product of $A$ with itself $t$ times, not the transpose of $A$.
2. We have a three state Markov chain wih transition matrix

$$
P=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right) .
$$

For example, some of the transition probabilities are $P(1 \rightarrow 1)=\frac{1}{2}, P(3 \rightarrow 1)=\frac{1}{3}$, and $P(1 \rightarrow 2)=\frac{1}{4}$. Let $\tau=\min \left(t \mid X_{t}=3\right)$. Even though this $\tau$ is not bounded (it could be arbitrarily large), we will see that $P(\tau>t) \leq C a^{t}$ for some $a<1$ so that the probability of large $\tau$ is very small. This is enough to prevent the stopping time paradox (take my word for it). Suppose that at time $t=1$, all states are equally likely.
a. Consider the quantities $u_{t}(j)=P\left(X_{t}=j\right.$ and $\left.\tau>t\right)$. Find a matrix evolution equation for a two component vector made from the $u_{t}(j)$ and a submatrix of $P$.
b. Solve this equation using the method of problem 1 to find a formula for $m_{t}=$ $P(\tau=t)$. For this you will have to find the eigenvalues and the left and right eigenvectors of the $2 \times 2$ matrix $A$.
c. Use the answer of part b to find $E[\tau]$. It might be helpful to use the formula

$$
\sum_{t=1}^{\infty} t P(\tau=t)=\sum_{t=1}^{\infty} P(\tau \geq t)
$$

Verify the formula if you want to use it.
d. Consider the quantities $f_{t}(j)=P\left(\tau \geq t \mid X_{1}=j\right)$. Find a matrix recurrence for them.
e. Use the method of question 1 to solve this and find the $f_{t}$.
3. Let $P$ be the transition matrix for an $n$ state Markov chain. Let $v(k)$ be a function of the state $k \in \mathcal{S}$. For this problem, suppose that paths in the Markov chain start at time $t=0$ rather than $t=1$, so that $X=\left(X_{0}, X_{1}, \ldots\right)$. For any complex number, $z$, with $|z|<1$, consider the sum

$$
\begin{equation*}
E\left[\sum_{t=0}^{\infty} z^{t} v\left(X_{t}\right) \mid \mathcal{F}_{0}\right] \tag{1}
\end{equation*}
$$

Of course, this is a function of $X_{0}=k$, which we call $f(k)$. Find a linear matrix equation for the quantities $f$ that involves $P, z$, and $v$. Hint: the sum

$$
E\left[\sum_{t=1}^{\infty} z^{t} v\left(X_{t}\right) \mid \mathcal{F}_{1}\right]
$$

may be related to (1) if we take out the common factor, $z$.
4. A particular random walk has states $X_{t}$ that are integers, possibly negative. In general the transition probabilities are $P(k \rightarrow k-1)=P(k \rightarrow k)=P(k \rightarrow k+1)=\frac{1}{3}$ with all other transion probabilities being zero. Don't worry that the state space might be infinite or that stopping times might be infinite.
a. Show that $F_{t}=X_{t}$ and $G_{t}=X_{t}^{2}-\frac{2}{3} t$ are martingales.
b. Define the stopping time $\tau_{a}=\min \left(t| | X_{t} \mid=a\right)$. Use the result of part $a$ and the Doob stopping time theorem to show that $E\left(\tau_{a} \mid X_{0}=0\right)=\frac{3}{2} a^{2}$.
c. Let $f(k)$ be defined by $f\left(X_{0}\right)=E\left[\tau_{a} \mid \mathcal{F}_{0}\right]$. Find a system of linear equations satisfied by the numbers $f(k)$ for $-a<k<a$. Express these equations in the form $A f=1$, where $A$ is a $(2 a-1) \times(2 a-1)$ matrix and $\mathbf{1}$ is a vector of all ones. To find the solution, calculate $A w$ where $w(k)=1, w(k)=k$, and $w(k)=k^{2}$, then express the answer as a linear combination of these vectors.
d. Show that the martingale method of part b also applies to $E\left[\tau_{a} \mid X_{0}=k\right]$ for any $|k|<a$. Check that this is consistent with the answer to part c.

