Assignment 2.

Given September 12, due September 19. Last revised, September 15.

Objective: Conditioning and Markov chains.

- 1. Suppose that \mathcal{F} and \mathcal{G} are two algebras of sets and that \mathcal{G} adds information to \mathcal{F} in the sense that any \mathcal{F} measureable event is also \mathcal{G} measurable. Since \mathcal{F} and \mathcal{G} are collections of events, this may be written $\mathcal{F} \subset \mathcal{G}$. Suppose that the probability space Ω is finite and that $X(\omega)$ is a variable defined on Ω (that is, a function of the random variable ω). The conditional expectations (in the modern sense) of X with respect to \mathcal{F} and \mathcal{G} are $Y = E[X \mid \mathcal{F}]$ and $Z = E[X \mid \mathcal{G}]$. In each case below, state whether the statement is true or false and explain your answer with a proof or a counterexample.
 - a. $Z \in \mathcal{F}$.
 - **b.** $Y \in \mathcal{G}$.
 - **c.** Z = E[Y | G].
 - **d.** $Y = E[Z | \mathcal{F}].$
- **2.** For any event $A \subseteq \Omega$ we can define the "indicator function" (also called the "characteristic function", particulatly by people who learned probability late in life), $\mathbf{1}_A(\omega) = 1$ if $\omega \in A$ and $\mathbf{1}_A(\omega) = 0$ if $\omega \notin A$. People who call this the "characteristic function" (usually people who learned probability late in life) write $\chi_A(\omega)$ for $\mathbf{1}_A(\omega)$.
 - **a.** Show that $E[\mathbf{1}_A] = P(A)$.
 - **b.** For any event, B, show that the classical $E[\mathbf{1}_A \mid B]$ is the same as the Bayes' rule conditional probability of A.

The "modern" definition of conditional probability, conditioning on an algebra of sets rather than a single set, is $P(A \mid \mathcal{F}) = E[\mathbf{1}_A \mid \mathcal{F}]$. The relationship between the classical and modern definition of conditional probability is more or less the same as the relation between classical and modern expected value.

3. Let S be a finite state space and Ω be the set of paths of length T from S. Let P(X) be the probability of a path $X \in \Omega$. For any t in the range 1 < t < T, let \mathcal{F}_t be the algebra of events in Ω generated by the values of X_s for $1 \le s \le t$. Let \mathcal{G}_t be the smaller algebra generated only by X_t . Finally, let \mathcal{H}_t be the "complementary" algebra (based on complementary information) generated by the values X_t, \ldots, X_T . An event in \mathcal{H}_t is a statement about the path from time t on without saying anything about the beginning values X_1, \ldots, X_{t-1} . Show that the Markov property is equivalent to either of the following,

a.

$$E[\mathbf{1}_A \mid \mathcal{F}_t] = E[\mathbf{1}_A \mid \mathcal{G}_t]$$
 for any $A \in \mathcal{H}_{t+1}$.

b.

$$E[F(X) \mid \mathcal{F}_t] = E[F(X) \mid \mathcal{G}_t]$$
 for any $F \in \mathcal{H}_{t+1}$.

Notes:(i) Part a is a special case of part b (why?). (ii) Part b implies that $E[F(X) \mid \mathcal{F}_t]$ is a function of X_t only. This us supposed to be intuitively clear as a consequence of the Markov property. (iii) Together with question 1, part b is a justification for the backward equation for expected values of final payouts.

4. Suppose we have a 3 state Markov chain with transition matrix

$$P = \begin{pmatrix} .6 & .2 & .2 \\ .3 & .5 & .2 \\ .1 & .2 & .7 \end{pmatrix}$$

and suppose that $X_1 = 1$.

- **a.** Show that the probability distribution of the first t steps conditioned on \mathcal{G}_{t+1} is the same as that conditioned on \mathcal{H}_{t+1} . This is a kind of backwards Markov property: a forward Markov chain is a backward Markov chain also.
- **b.** Calculate $P(X_2 = 2 \mid \mathcal{G}_3)$. This consists of 3 numbers.