Exercise 1-a

This is false.
Since $Z=E[X \mid \mathcal{G}], Z$ is \mathcal{G}-measurable, but there is no reason for Z to be \mathcal{F}-measurable. Let us construct a counter-example. We choose Ω to be $\Omega=\{a, b, c\}, P$ is defined as $P(\{a\})=$ $P(\{b\})=P(\{c\})=\frac{1}{3}$ and $X: \Omega \rightarrow \mathbb{R}$ is such that $X(a)=1, X(b)=2$ and $X(c)=3$. Of all the σ-algebra one can define on Ω, we choose two very simple ones, $\mathcal{F}=\{\emptyset, \Omega\}$ and $\mathcal{G}=\{\emptyset, \Omega,\{a\},\{b, c\}\}$. Any \mathcal{F}-measurable function has to be constant, so if $Y=E[X \mid \mathcal{F}]$, we necessarily have $Y=E(X)=\frac{1}{3}(1+2+3)=2$. On the other hand, denoting by $Z=E[X \mid \mathcal{G}]$, we know that for each $\omega \in \Omega$, we have:

$$
Z(\omega)= \begin{cases}E[X \mid\{a\}] & \text { if } \omega=\{a\} \\ E[X \mid\{b, c\}] & \text { if } \omega \in\{b, c\}\end{cases}
$$

Since each event has the same probability, it is easy to see that:

$$
Z(\omega)= \begin{cases}1 & \text { if } \omega=\{a\} \\ \frac{2+3}{2}=\frac{5}{2} & \text { if } \omega \in\{b, c\}\end{cases}
$$

Therefore Z is not constant, and can not be \mathcal{F}-measurable.

Exercise 1-b

This is true.
$Y=E[X \mid \mathcal{F}]$, thus Y is \mathcal{F}-measurable. But $\mathcal{F} \subset \mathcal{G}$, therefore Y is \mathcal{G}-measurable as well.

Exercise 1-c

This is false.
We just proved that Y is \mathcal{G}-measurable, and therefore $E[Y \mid \mathcal{G}]=Y$ almost surely. But the counterexample of part a) clearly shows the statement $Z=Y$ is false.

Exercise 1-d

This is true.
First it is obvious that both random variables Y and $E[Z \mid \mathcal{F}]$ are \mathcal{F}-measurable. Now let us pick any element A of the σ-algebra \mathcal{F}. On one hand we have:

$$
E\left[Y \mathbf{1}_{A}\right]=E\left[E[X \mid \mathcal{F}] \mathbf{1}_{A}\right]
$$

and since $A \in \mathcal{F}$, we know $\mathbf{1}_{A}$ is \mathcal{F}-measurable, and the above expression is equal to:

$$
E\left[Y \mathbf{1}_{A}\right]=E\left[E\left[X \mathbf{1}_{A} \mid \mathcal{F}\right]\right]=E\left[X \mathbf{1}_{A}\right]
$$

On the other hand, because $\mathbf{1}_{A}$ is \mathcal{F}-measurable, we have:

$$
E\left[E[Z \mid \mathcal{F}] \mathbf{1}_{A}\right]=E\left[E\left[Z \mathbf{1}_{A} \mid \mathcal{F}\right]\right]=E\left[Z \mathbf{1}_{A}\right]
$$

But $Z=E[X \mid \mathcal{G}]$, and it follows from $\mathcal{F} \subset \mathcal{G}$ that $\mathbf{1}_{A}$ is \mathcal{G}-measurable as well, and therefore:

$$
E\left[E[X \mid \mathcal{G}] \mathbf{1}_{A}\right]=E\left[E\left[X \mathbf{1}_{A} \mid \mathcal{G}\right]\right]=E\left[X \mathbf{1}_{A}\right]
$$

Thus we have $E\left[Y \mathbf{1}_{A}\right]=E\left[E[Z \mid \mathcal{F}] \mathbf{1}_{A}\right]$ and both Y and $E[Z \mid \mathcal{F}]$ are \mathcal{F}-measurable. By uniqueness of the conditional expecation, we have $Y=E[Z \mid \mathcal{F}]$ almost surely.

Exercise 2-a

By definition $E\left[\mathbf{1}_{A}\right]=\sum_{\omega \in \Omega} \mathbf{1}_{A}(\omega) d P(\omega)=\sum_{\omega \in A} d P(\omega)=P(A)$.

Exercise 2-b

It is the same proof:

$$
E\left[\mathbf{1}_{A} \mid \mathcal{B}\right]=\sum_{\omega \in \Omega} \mathbf{1}_{A}(\omega) d P(\omega \mid \mathcal{B})=\frac{1}{P(B)} \sum_{\omega \in \Omega} \mathbf{1}_{A}(\omega) \mathbf{1}_{B} d P(\omega)=\frac{1}{P(B)} \sum_{\omega \in A \cap B} d P(\omega)=\frac{P(A \cap B)}{P(B)}
$$

Exercise 3-a

Property b) is one of the definition of the Markov property. First let us prove that a) and b) are equivalent. By choosing a specific $F(X)=\mathbf{1}_{A}(X)$, we see that b) implies a). We know the state space is finite, so we can write it as $S=\left\{a_{1}, \ldots, a_{N}\right\}$. Since X takes its values in S, we have for any function F :

$$
F(X)=\sum_{i=1, \ldots, N} F\left(a_{i}\right) \mathbf{1}_{\left\{a_{i}\right\}}(X)
$$

Now we use the result a), and the linearity of the conditional expectation to get:

$$
E\left[F(X) \mid \mathcal{F}_{t}\right]=\sum_{i=1, \ldots, N} F\left(a_{i}\right) E\left[\mathbf{1}_{\left\{a_{i}\right\}}(X) \mid \mathcal{F}_{t}\right]=\sum_{i=1, \ldots, N} F\left(a_{i}\right) E\left[\mathbf{1}_{\left\{a_{i}\right\}}(X) \mid \mathcal{G}_{t}\right]=E\left[F(X) \mid \mathcal{F}_{t}\right]
$$

Exercise 4-a

The state space is finite, so we can write it as $S=\{1,2,3\}$. We want to prove that for any $\left\{a_{i}\right\} \in S$ we have:

$$
P\left(X_{1}=a_{1}, \ldots, X_{t}=a_{t} \mid X_{t+1}=a_{t+1}, \ldots, X_{T}=a_{T}\right)=P\left(X_{1}=a_{1}, \ldots, X_{t}=a_{t} \mid X_{t+1}=a_{t+1}\right)
$$

We have to transform the expression in order to use the regular Markov property. From now on, to make the notations lighter, we will write $P\left(X_{1}, \ldots, X_{t}\right)$ instead of $P\left(X_{1}=a_{1}, \ldots, X_{t}=a_{t}\right)$. The left handside of the above expression is:
$P\left(X_{1}, \ldots, X_{t} \mid X_{t+1}, \ldots, X_{T}\right)=\frac{P\left(X_{1}, \ldots, X_{T}\right)}{P\left(X_{t+1}, \ldots, X_{T}\right)}=\frac{P\left(X_{t+2}, \ldots, X_{T} \mid X_{t+1} \ldots, X_{1}\right) P\left(X_{t+1}, \ldots, X_{1}\right)}{P\left(X_{t+1}, \ldots, X_{T}\right)}$
Then we use the regular Markov property on the upper-left part of this equation to get:

$$
\frac{P\left(X_{t+2}, \ldots, X_{T} \mid X_{t+1}\right) P\left(X_{t+1}, \ldots, X_{1}\right)}{P\left(X_{t+1}, \ldots, X_{T}\right)}=\frac{P\left(X_{t+2}, \ldots, X_{T} \mid X_{t+1}\right) P\left(X_{t+1}, \ldots, X_{1}\right)}{P\left(X_{t+2}, \ldots, X_{T} \mid X_{t+1}\right) P\left(X_{t+1}\right)}
$$

Crossing out the identical terms, we obtain:

$$
\frac{P\left(X_{t+1}, \ldots, X_{1}\right)}{P\left(X_{t+1}\right)}=P\left(X_{1}, \ldots, X_{t} \mid X_{t+1}\right)
$$

Exercise 4-b This is a simple calculation. I will give the details for the first one, the other ones are similar. We have:

$$
P\left(X_{2}=2 \mid X_{3}=1\right)=\frac{P\left(X_{2}=2, X_{3}=1\right)}{P\left(X_{3}=1\right)}=\frac{P\left(X_{3}=1 \mid X_{2}=2\right) P\left(X_{2}=2\right)}{P\left(X_{3}=1\right)}
$$

But the Markov chain is stationnary, therefore $P\left(X_{3}=1 \mid X_{2}=2\right)=P_{2,1}$ and since $X_{1}=1$, it follows:

$$
P\left(X_{2}=2 \mid X_{3}=1\right)=\frac{P_{2,1} P_{1,2}}{P\left(X_{3}=1\right)}
$$

There are 2 ways to calculate $P\left(X_{3}=1\right)$, either by conditionning upon X_{2} and then we have:

$$
P\left(X_{3}=1\right)=\sum_{i=1, \ldots, 3} P\left(X_{3}=1 \mid X_{2}=i\right) P\left(X_{2}=i\right)=\sum_{i=1, \ldots, 3} P_{i, 1} P_{1, i}
$$

or by directly using the fact that the transition probability matrix for X_{3} is P^{2}. Either way, we find:

$$
P\left(X_{2}=2 \mid X_{3}=1\right)=\frac{P_{2,1} P_{1,2}}{\sum_{i=1, \ldots, 3} P_{i, 1} P_{1, i}}=\frac{0.3 * 0.2}{0.6 * 0.6+0.3 * 0.2+0.1 * 0.2}=0.136364
$$

For the 2 other possible states for X_{3} we get:

$$
P\left(X_{2}=2 \mid X_{3}=2\right)=\frac{0.5 * 0.2}{0.6 * 0.2+0.2 * 0.5+0.2 * 0.2}=0.384615
$$

and

$$
P\left(X_{2}=2 \mid X_{3}=3\right)=\frac{0.2 * 0.2}{0.6 * 0.2+0.2 * 0.2+0.2 * 0.7}=0.133333
$$

