
Stochastic Calculus - Problem set 2 - Fall 2002

Exercise 1 - a
This is false.
Since Z = E [X|G], Z is G-measurable, but there is no reason for Z to be F-measurable. Let
us construct a counter-example. We choose Ω to be Ω = {a, b, c}, P is defined as P ({a}) =
P ({b}) = P ({c}) = 1

3 and X : Ω → R is such that X(a) = 1, X(b) = 2 and X(c) = 3.
Of all the σ-algebra one can define on Ω, we choose two very simple ones, F = {∅,Ω} and
G = {∅,Ω, {a} , {b, c}}.Any F-measurable function has to be constant, so if Y = E [X|F ], we
necessarily have Y = E(X) = 1

3 (1 + 2 + 3) = 2. On the other hand, denoting by Z = E [X|G], we
know that for each ω ∈ Ω, we have:

Z(ω) =

{
E [X| {a}] if ω = {a}
E [X| {b, c}] if ω ∈ {b, c}

Since each event has the same probability, it is easy to see that:

Z(ω) =

{
1 if ω = {a}
2+3
2 = 5

2 if ω ∈ {b, c}

Therefore Z is not constant, and can not be F-measurable.

Exercise 1 - b
This is true.
Y = E [X|F ], thus Y is F-measurable. But F ⊂ G, therefore Y is G-measurable as well.

Exercise 1 - c
This is false.
We just proved that Y is G-measurable, and therefore E [Y |G] = Y almost surely. But the counter-
example of part a) clearly shows the statement Z = Y is false.

Exercise 1 - d
This is true.
First it is obvious that both random variables Y and E [Z|F ] are F-measurable. Now let us pick
any element A of the σ-algebra F . On one hand we have:

E [Y 111A] = E [E [X|F ] 111A]

and since A ∈ F , we know 111A is F-measurable, and the above expression is equal to:

E [Y 111A] = E [E [X111A|F ]] = E [X111A]

On the other hand, because 111A is F-measurable, we have:

E [E [Z|F ] 111A] = E [E [Z111A|F ]] = E [Z111A]

But Z = E [X|G], and it follows from F ⊂ G that 111A is G-measurable as well, and therefore:

E [E [X|G] 111A] = E [E [X111A|G]] = E [X111A]

Thus we have E [Y 111A] = E [E [Z|F ] 111A] and both Y and E [Z|F ] are F-measurable. By unique-
ness of the conditional expecation, we have Y = E [Z|F ] almost surely.
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Exercise 2 - a
By definition E [111A] =

∑
ω∈Ω 111A(ω)dP (ω) =

∑
ω∈A dP (ω) = P (A).

Exercise 2 - b
It is the same proof:

E [111A|B] =
∑
ω∈Ω

111A(ω)dP (ω|B) =
1

P (B)

∑
ω∈Ω

111A(ω)111BdP (ω) =
1

P (B)

∑
ω∈A∩B

dP (ω) =
P (A ∩B)

P (B)
.

Exercise 3 - a
Property b) is one of the definition of the Markov property. First let us prove that a) and b) are
equivalent. By choosing a specific F (X) = 111A(X), we see that b) implies a). We know the state
space is finite, so we can write it as S = {a1, . . . , aN}. Since X takes its values in S, we have for
any function F :

F (X) =
∑

i=1,...,N

F (ai)111{ai}(X)

Now we use the result a), and the linearity of the conditional expectation to get:

E [F (X)|Ft] =
∑

i=1,...,N

F (ai)E
[
111{ai}(X)|Ft

]
=

∑
i=1,...,N

F (ai)E
[
111{ai}(X)|Gt

]
= E [F (X)|Ft]

Exercise 4 - a
The state space is finite, so we can write it as S = {1, 2, 3}. We want to prove that for any
{ai} ∈ S we have:

P (X1 = a1, . . . , Xt = at|Xt+1 = at+1, . . . , XT = aT ) = P (X1 = a1, . . . , Xt = at|Xt+1 = at+1)

We have to transform the expression in order to use the regular Markov property. From now on,
to make the notations lighter, we will write P (X1, . . . , Xt) instead of P (X1 = a1, . . . , Xt = at).
The left handside of the above expression is:

P (X1, . . . , Xt|Xt+1, . . . , XT ) =
P (X1, . . . , XT )

P (Xt+1, . . . , XT )
=

P (Xt+2, . . . , XT |Xt+1 . . . , X1)P (Xt+1, . . . , X1)
P (Xt+1, . . . , XT )

Then we use the regular Markov property on the upper-left part of this equation to get:

P (Xt+2, . . . , XT |Xt+1)P (Xt+1, . . . , X1)
P (Xt+1, . . . , XT )

=
P (Xt+2, . . . , XT |Xt+1)P (Xt+1, . . . , X1)

P (Xt+2, . . . , XT |Xt+1)P (Xt+1)

Crossing out the identical terms, we obtain:

P (Xt+1, . . . , X1)
P (Xt+1)

= P (X1, . . . , Xt|Xt+1)

Exercise 4 - b This is a simple calculation. I will give the details for the first one, the other ones
are similar. We have:

P (X2 = 2|X3 = 1) =
P (X2 = 2, X3 = 1)

P (X3 = 1)
=

P (X3 = 1|X2 = 2)P (X2 = 2)
P (X3 = 1)

But the Markov chain is stationnary, therefore P (X3 = 1|X2 = 2) = P2,1 and since X1 = 1, it
follows:

P (X2 = 2|X3 = 1) =
P2,1P1,2

P (X3 = 1)

2



There are 2 ways to calculate P (X3 = 1), either by conditionning upon X2 and then we have:

P (X3 = 1) =
∑

i=1,...,3

P (X3 = 1|X2 = i)P (X2 = i) =
∑

i=1,...,3

Pi,1P1,i

or by directly using the fact that the transition probability matrix for X3 is P 2. Either way, we
find:

P (X2 = 2|X3 = 1) =
P2,1P1,2∑

i=1,...,3 Pi,1P1,i
=

0.3 ∗ 0.2
0.6 ∗ 0.6 + 0.3 ∗ 0.2 + 0.1 ∗ 0.2

= 0.136364

For the 2 other possible states for X3 we get:

P (X2 = 2|X3 = 2) =
0.5 ∗ 0.2

0.6 ∗ 0.2 + 0.2 ∗ 0.5 + 0.2 ∗ 0.2
= 0.384615

and
P (X2 = 2|X3 = 3) =

0.2 ∗ 0.2
0.6 ∗ 0.2 + 0.2 ∗ 0.2 + 0.2 ∗ 0.7

= 0.133333
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