Scientific Computing, Courant Institute, Fall 2021
http://www.math.nyu.edu/faculty /goodman/teaching/SciComp2021/index.html

Third assignment

1. (This exercise gives an example of an unstable algorithm for a well con-
ditioned problem. The algorithm is unstable because it relies on a sub-
problem that is ill conditioned.)

The problem comes from computing probabilities related to a simple hop-
ping process. A hopping process is a random process in which a particle
“hops” between neighboring “sites” at random times. A simple one di-
mensional hopping process “lives” on sites {0,1,--- .n — 1} (the integers
between 0 and n — 1, including 0 and n — 1. The location at time ¢ is
X(t), which is a random site. The value of X (t) is one of the integers
0,1,---,n — 1. We say X hops at time t if the value changes at that
time. As a mathematical function, X(¢) is “piecewise constant”, with
discontinuities at the time with it hops.

Suppose X (t) = k with 0 < k <n — 1. In a time interval from ¢ to ¢ + dt,
if k < n—1, it hops up to k + 1 with probability r, dt. If k& > 0, the
particle hops down to k — 1 with probability rq4dt. If X (¢) =n—1, then it
cannot hop up, and if X (¢) = 0 then it cannot hop down. The occupation
probabilities are pg(t) = Pr(X(t) = k). There is a small probability of
having a hop in a small interval of time, but if you neglected it then there
would be no hops at all. The probability of more than one hop is even
smaller and (take my word for it) may be neglected.

These probabilities satisfy a system of differential equations derived as
follows. We denote conditional probability using the symbol “|”, so Pr(A |
B) is the probability of A conditional on B. Conditional probability allows
to express pi(t+dt) in terms of py(t), pr—1(t), and pr41(t). If X (t+dt) =
k, then X (t) = k (most likely), or X (¢t = k — 1) and there was a hop up,
or X(t) = k+ 1 and there was a hop down. The derivation neglects the
possibility of more than one hop in interval dt. Here is the calculation,
which some explanations after:

Pr(X(t+dt)=k)= Pr(X(t+dt)=k|Xt)=k—-1)-Pr(X(¥)=k—-1)
+Pr(X(t+dt)=k|X(t)=k+1)-Pr(X(t)=k+1)
+Pr(X(t+dt)=k|X(t)=k) -Pr(X(t)=k)

pr(t+dt) = Pr(hop up) -pr_1(t)

+ Pr(hop down) - pr41(t)

+ Pr(no hop) - pi(t)
pr(t+ dt) = ry dt pr—1(t) + ra dt P (t) + (1 — ry dt — 74 dt) pr(t)
pr(t+dt) = pr(t) + [rupr—1(t) + rapes1(t) — (ru + ra)pr(t)] dt .

T

The basic rule of conditional probability (if you haven’t taken a big prob-
ability course) is that if A is an “event” (X (¢t + dt) = k in this case) and
B, C, and D are distinct ways A can happen (B is X(t) = k-1, C is
X(t) =k, etc.) then

Pr(A) = Pr(A | B) - Pr(B) + Pr(A| C) - Pr(C) + -+ .

The first equality in the derivation is this conditional probability formula.
The probability of X = k at t+dt is the sum of the conditional probabilities
multiplying the probabilities for the possible values of X at time t. The
second equality says the same thing, using the above terminology and
notation. The third inequality comes from substituting in the hopping
probabilities. The probability of “no hop” is 1 minus the probability of a
hop, which is 1 — r, dt — ry dt. The notation is r, for the rate to jump up
and ry for the rate to jump down. The code MatrixExponential.py uses
7] = Ty + 74 for the “loss rate”, which is the rate to jump out of site k. The
corresponding probability to jump out of site k is r; dt. The probability
not to jump out is 1 — r; dt.

These formulas have to be modified if ¥ = 0 (no down hops) or k =n — 1
(no up hops). The modified formulas are

po(t+dt) = po(t) +[rapi(t) —rupo(t)]dt
pnfl(t + dt) = pnfl(t) + [Tu pn72(t) —Ta pnfl(t)] dt .

These relations may re-arranged and expressed in traditional calculus no-
tation as

%po(t) - - po(t)ry +pi(t)ra

d
apk(t) = Pr—1(t) Ty — Pe(t)(ra + 74) + Pry1(t)ra, for 1 <k <n—2

d
apn—l(t) = pn—2(t) Ty —rapn_1(t)

This system if differential equations is expressed in matrix/vector form,
by tradition, using a row vector (not column vector) for the probabilities
p(t) = (po(1), -+ ,pn—1(t)). The matrix form is the differential equations
is

—7Tu T4 0
p T —(ru47rd) Ta
%(p0(1)7 7pn—1(t)) = (po(l)a apn—l(t)) 0 T
0 Ty

Td
—rg

In matrix/vector form, this is

Lp(t) =p) L

The matrix L is the generator of the random hopping process. You can see
that it is tri-diagonal, with non-zero elements only on the “main diagonal”
and the nearest “off diagonals”.

(a) A diagonal scaling (more properly, diagonal re-scaling) is
L=W'LW, W =diag(1,ws, - ,Wn_1) .

Show that if W is non-singular, then the eigenvalues of L and L
are the same. Find W so that L is symmetric. Conclude that the
eigenvalues of L are real. Show that right eigenvectors of L are not left
eigenvectors. Hint for the last. If Lv = Av, then WWLLWW 1ty =
Av so Lv = A\v, with suitable ¥. [Not to hand in: any sign symmetric
tridiagonal matrix (you supply the definition, allow for zeros on the
off diagonal if you want) is similar to a symmetric tridiagonal matrix
in this way. In differential equations, a Sturm Liouville operator
(second order differential operator in one variable) is similar to a self-
adjoint differential operator, using a diagonal “weighting function”.
Tri-diagonal matrices may be thought of as a discrete analogue of
one-variable second order differential operators.]

(b) The code MatrixExponential.py implements three methods for solv-
ing the matrix differential equations %p = pL using the fundamental
solution and matrix exponential. See MatrixExponential.pdf for
more on this and a description of the methods. Experiment with the
code on a variety of problems (change the dimension, the final time,
how different the hopping rates are) to get a feel for which methods
give accurate results for which problems. Look for problems that are
not extreme that make the eigenvalue method look bad, and problems
that make the matrix exponential method look bad. Note that you
don’t change the problem (or the solution algorithms) if you double
the hopping rates and cut the final time in half.

(¢) Modify the function mee(L,t) to return a tuple (Python term) con-
sisting of the computed matrix exponential and the condition number
of the eigenvector matrix R. Modify the function meT(L,t,n) to re-
turn its computed exponential and the largest norm H %Lk H Modify
the output part of the main program (lines above 80) to add this in-
formation to the printout table. Comment on why/how well/not well
this information explains the accuracy/inaccuracy of each method.

2. (This exercise explores linear least squares fitting in a setting where it
can be ill conditioned. It takes you through the process of creating and

working with fake data to see how well the algorithm works when you
know the answer.)

The problem (only slightly idealized from actual chemical estimation prob-
lems) involves concentrations C;(t) that decay exponentially in time be-
cause of some chemical reaction. There are m chemical species whose
concentrations are decaying. Species ¢ has decay rate r;, which means

that %C’i(t) = —r;C;(t). In theory, the total concentration at time ¢
should be .
FHy =3 Cit)
i=1

The task is to estimate the initial concentrations of the species using only
observations of the total, f(t). and the fact that different species have
different decay rates: r; # r; if i # j. The initial concentrations are
A; = C;(0).

The approach will be linear least squares fitting. The quantities involved
are
e Positive decay rates: 11, , Ty, assumed known (for this exercise)
e Initial concentrations: Aq,---, A,,, to be estimated from data
o Observation times: 0 <t <ty <--- <ty

o Theoretical value at time t:

(6= A
i=1
e Observed values Fj;, j=1,---,n

o Residual (fitting error, statisticians’ terminology) €; = F; — f(¢;).
e Sum of squares of residuals

n

RQZZG?.

j=1

e m = the number of exponentials in the fitting function f

e n = the number of observations

Least squares fitting means finding the A; to minimize R2. Experiment
with this in the following steps. Write up your procedures and results
in a single paragraph or collection of paragraphs. Include printouts of
the Python modules you wrote and some important results. You will
receive more credit if you summarize your results in a few well formatted
tables rather than printing out a lot of numbers that are hard to interpret.
Interpreting results and understanding the main lessons of the exercise is
an important part of the exercise.

()

Write a module that contains a function or functions to create fake
data. The function or functions should return numbers r;, ¢;, and F}.
To do that, they will need to generate fake numbers A;. The fake
observations F; should be equal to f(t;)+¢;, where &; (fake observa-
tion errors) independent and are generated using a Gaussian random
number generator with a specified standard deviation and mean zero.
This code should be given arguments that describe the difficulty of
the problem (more on this below). You will do experiments with easy
problems to check that the code works and then hard problems to
see what can and cannot be learned from observations.

Write code to solve the linear least squares problem. Create a matrix,
M and “right hand side” b, in terms of the data r;, t;, and F}, so
that the estimates A; are components of a vector x that solves

min | Mz — b, .
x

Do computational experiments to show that the estimates Ez are
close to the true values A; for easy problems (small m, well separated
r;, lots of observations in a range that is not too small, not too large,
and well spaced, small observation noise. Your fake data generator
should be able to make data like this, with suitable input parameters.
Use one of the solution methods from part (c).

Experiment with three solution algorithms for the linear least squares
problem.

i. Form the normal equations using MM and solve using the
Cholesky factorization.
ii. Use the QR decomposition of M.
iii. Use the SV D of M.

The SVD is so that you can print the condition number

R = Jmax/amin .

All three methods should give (to within roundoff) the same esti-
mates A; for easy problems. Check this.

Experiment with harder problems. Part of this problem is to see what
makes the problem hard. You can measure the difficulty using the
condition number computed from the singular values. Try making
the 7; closer together, increasing m, clumping the ¢;. Comment on
the agreement between the different solution methods from part (c)
on hard problems. Can you tell which method does better or worse
on hard problems?

