Nonlinear equations and optimization*

Jonathan Goodman

April 8, 1999

1 Introduction

This section discusses numerical solution of systems of nonlinear equations and the problem of finding the
maximum or minimum of a smooth function of one or more variables (optimization). These problems are
closely related. Most optimization algorithms make strong use of the system of equations gotten by setting
the partial derivatives of the objective function (the function being minimized or maximized) to zero.

The algorithms discussed here are iterative; they produce a sequence of approximate solutions of increasing
accuracy. The total algorithm consists of a sequence of iterations. At the beginning of each iteration, there
is the current iterate, T. One iteration of the algorithm produces a (hopefully) better approximation, z'.
The solution being sought is z.. The iterative process starts with an initial guess, zo. We take this as Z,
apply an iteration of the algorithm and produce a better guess, z1 = ', and so on. We never expect to have
the exact answer, x.. Rather, (if the algorithm works) the iterates will converge to z.: z, — T, as n — oc.
The rate at which ||z, — z«|| — 0 as n — oo is the convergence rate. A good algorithm will have a rapid
convergence rate.

Generally, we stop the iteration process when some convergence criterion is satisfied. This criterion could
be that the iterates have stopped changing!: ||zg+1 — zk|| / ||zx|| < €. The € is often called the tolerance. We
could also stop when the residuals reach a certain tolerance level.

Iterative algorithms never produce the exact answer. However, good algorithms and well conditioned
problems often allow

llzx — x|l
[l |l

which is the best we could hope for on a computer, even from an “exact” solution formula. The fact that
we have an iterative algorithm rather than a direct algorithm does not necessarily mean that the eventual
computed solution will be less accurate.

Generally, a computer code for solving systems of equations or smooth optimization has a relatively
simple “core algorithm” together with safequards that keep the code from giving the wrong answer with
poor initial guesses. Producing such software requires several kinds of mathematical analysis and some
software engineering skills.

~ €mach >

2 Solving a single nonlinear equation

The simplest problem is that of solving a single equation in a single variable: f(z) = 0. Algorithms for this
problem illustrate some features of algorithms for more complex problems. They also differ in significant
ways. For example, the bisection algorithm produces a sequence or pairs of points (a,, b,) rather than just

*These are course notes for Scientific Computing, given Spring 1999 at the Courant Institute of Mathematical Sciences at
New York University. Professor Goodman retains the copyright to these notes.
! Note that we measure relative change rather than absolute change, ||zx+1 — || <.

a sequence of approximate solutions. Algorithms for a single equation may be components of more complex
algorithms for solving systems of equations.

2.1 Bisection

The bisection algorithm, or bisection search, is the simplest and most robust way to find the root of a single
function of one variable. It does not require f(x) to be smooth or even differentiable, but merely a continuous
function of z. It is based on a simple fact about continuous functions called the intermediate value theorem:
if f(a) <0 < f(b) and f is continuous in the closed interval between a and b then there is an z. between a
and b so that f(z,.) = 0. In other words, it is impossible to jump from negative to positive without actually
crossing zero. The wording of the theorem was chosen to be correct whether or not a < b.

The bisection algorithm consists of repeatedly bisecting the interval in which a root is known to lie.
Suppose we have an interval® [a,b] with f(@) < 0 and f(b) > 0. The intermediate value theorem (or
“common sense”) tells us that there is a root of f in [@,b]. The uncertainty in the location of the root is
the length of the interval: |b —a|. To cut that uncertainty in half, we bisect the interval. The midpoint is
¢ = (a+ b)/2. We evaluate f(¢) to determine its sign. If f(¢) > 0 then we know there is a root of f in the
sub interval [a,c]. In this case, we take o' = @ and /b = . In the other case, f(¢ < 0, we may take o' = ¢
and b’ = b. In either case, f changes sign over the half size interval [a’, '].

To start the bisection algorithm, we must produce an initial interval [ag, bo] that brackets a root of f.
Running the bisection procedure over and over produces a sequence of intervals with whose size is decreasing
exponentially at the rate

|br, — an| =277 |bp — ag| -

To get a feeling for the convergence rate, use the (approximate) formula 2!© = 10%. In this context, the
formula tells us that we get three decimal digits of accuracy for each ten iterations. This may seem pretty
good, but Newton’s method is much faster, when it works. Moreover, Newton’s method generalizes to more
than one dimension while there is no useful multidimensional analogue of bisection search.

Although the bisection algorithm is robust, there is a way it can fail. On a computer, f(z) is not evaluated
exactly, but with some roundoff or other error. This roundoff may change the sign of f, as reported from
the procedure that calculates it. Another way to say this is that because f is not evaluated exactly, the
computed approximation to f may not be continuous on a fine scale. A bisection code should take this
possibility into account some how, either by refusing to bisect beyond a certain point, or by checking for
consistency among the reported signs of f, or by making explicit use of an error estimate for computed f
values.

2.2 Newton’s method for a nonlinear equation

Newton’s method is a locally convergent method. This means that the iterates will converge to a root if the
initial guess is close enough. How you find a close enough initial guess is your business. For one dimensional
problems, you might use bisection search. For optimization problems there are safeguards that allow the
algorithm to make progress even from a poor initial guess.

There is a geometric explanation of the Newton iteration for functions of one variable. Suppose that our
current iterate, Z, is close to the root, x.. We are able to evaluate f(Z) and f'(Z) but do now know ..
From the information we have, we construct the line tangent to the graph at (Z, f(Z)). The new iterate, z',
is the point where this tangent line crosses the = axis. If Z is close to z,, then the tangent line will be close
to the graph of f still at ', so z’ will be quite close to z..

To program this method, we need a formula for z’. The line tangent to the graph at (Z, f(Z)) has slope
f'(Z). Therefore the formula for the line is

y—f@)=rf(@ (z-2) . (1)
We find where this line crosses the z axis by setting ¥ = 0 and solving for z = 2’
o =z~ f'(@)7" f(z) . (2)

2The interval notation [a,b] used here is not intended to imply that a < b. For example, the interval [5,2] consists of all
numbers between 5 and 2, endpoints included.

This is Newton’s method.

An analytical, as opposed to geometric, approach to Newton’s method will help us understand its con-
vergence rate and also make it clear how to generalize it to problems with more than one variable. Again
supposing that the root, z., is close to our current iterate, Z, the Taylor series approximation to f about Z
should be very useful at z,. Keeping just two terms of this series replaces f with a linear approximation:

f@)=f@)+f (@) (z-2) . 3)
We try to set f = 0 be setting the approximation on the right side of (3) to zero. This gives
0=f@)+f@ (-3 , (4)

which is the same as (2).
The local convergence rate of Newton’s method is governed by the error in the approximation (3).
Therefore, we restate (3) more precisely as

f@) = f@) + @) - (z—2) +O(lz — 2" . (5)

Together with (4), this implies that
f@)=0(z - 2) .

From (2) this becomes
If@) < Clr@)” - (6)

In other words, one iteration of Newton’s method roughly squares the residual. That means that the residual
could go, say, from .3 to .1 to .01 to 10~* to 10~8 on four Newton steps. This local quadratic convergence of
Newton’s method is faster than the linear convergence® of bisection search. Normally, quadratic reduction of
the residuals also implies quadratic reduction of the error. In a neighborhood of z,, f(z) ~ f'(z) (z — z.),
so (6) also implies
|z’ — z,| < C|Z — 2./
Newton’s method is not as robust as bisection search. The constant in the quadratic convergence estimate
(6) will be large if f' is small or f” is large near z,. How far is too far is hard to know in advance. Any
code based on Newton’s method must take into account the possibility of non convergence.

2.3 Minimization problems in one dimension

Again in the situation where z is a single variable, we want to minimize a function, V' (z). That is, we want
to find z, so that V(z,) < V() for any = # z,. For differentiable V', we can find z, by solving the nonlinear
equation

V'(ze) =0 . (7)

We can find the solution of (7) by applying Newton’s method to the function f(z) = V'(x). We have to
compute V'(z) and V" (x), but we will get quadratic local convergence.

I pause to clarify some terminology associated with minimization (or “optimization”). A differentiable
function of z, V(x), may or may not have a minimum value. The function V(z) = z clearly has no minimum
value. The function V(z) = 1/(1 + %) has an “infemum”, which is 0 (corresponding to * = +c0), but
mathematicians do not call this a minimum because it is not “attained”: there is no z, with V(z,) = 0. The
function V(z) = —1/(1 + 2?) has a minimum value at z, = 0. A point x, is a local minimum if it gives the
smallest value of V' for some range of nearby z values, that is if V(z,) < V(z) for all z with |z —z,| <e. It
is a strict local minimum if V(z,) < V() for |z, — z| < € and z # .. The function V(z) = 1z* + 2% —2?
has a strict local minimum at z = 1, but the (global) minimum is at z = —2.

3The error at the next step is linearly proportional to the error at the current step. For bisection, 1/2 is the constant of
proportionality.

Although we may consider a minimization problem as a nonlinear equation (V'(z) = 0), there are two
features of minimization problems that distinguish optimization from general nonlinear equation solving.
The first is that (7) is not the only criterion for z. to be a minimizer. We must also have

V' (zs) >0 .

In nondegenerate cases, this is V" (x,) > 0. One consequence of this is that we should not take the “Newton
step” (see below) if V" < 0. This might take us to a local maximum but we are not likely to be close to a
local minimum.

The second special feature of minimization is that it is possible to guarantee that V(z') < V(Z) using
safeguards discussed below. Because of this, we either go down forever or, like Alice, eventually reach at
least a local minimum®. This is the reason safeguarded optimization codes can be more robust than general
nonlinear equation solving software.

Both safeguards are modifications of Newton’s method. the unmodified method, (2) in the present
notation is

g =z-V"x)V'(z) . (8)
This is written
=z+p, 9)
where
p=-V"(@)V'(2) (10)

is the Newton step.
The first safeguard is to make sure that p is a descent direction, that is, that a sufficiently small step in
the direction of p reduces V a little. This means that

d

EV(:E +tp) <0 whent=0. (11)
The formula (10) will have this property if V"(Z) > 0 but not otherwise. The simplest fix is to replace (10)
with a safeguarded version

p==|V"@|"V'@) . (12)

We probably need to safeguard against the possibility that V" (Z) = 0, possibly replacing it with €, .}, in
that case. Note that the safeguarded search direction formula (12) is the same as the unsafeguarded Newton
search direction (10) in the neighborhood of a local minimum (where V" > 0). This allows us to use the
actual Newton step, and get quadratic convergence, near a local minimum.

The second safeguard protects us from taking a step that is too large or too small. Among the many
possible ways to do this, I discuss a form of binary line search. This line search takes a step in the search
direction of sizet. That is, (9) is replaced by

r=z+tp . (13)

Define ¢(t) = V(Z + tp). This search is not supposed to find the actual minimum of ¢ accurately. It merely
protects against steps that are much too big or small. A binary search can guarantee that we find (or die
trying) a ¢ so that there is at least a local minimum, ¢., of ¢ within a factor of 2 of ¢. That is /2 < . < 2t.
This will be the case if

P(t) < ¢(2t) (14)
and
o(t) < ¢(t/2) (15)

Actually, we often replace (8) with the weaker condition ¢(t) < ¢(0), which is less work to check and usually
leds to the same robustness.

41t is possible, but very unlikely, to arrive at a stationary point that is not a local minimum. For example, if V(z) = z2, we

might approach z = 0 through negative but increasing z values.

To find a t suitable ¢, start with initial guess t = 1, corresponding to the unsafeguarded Newton step.
Evaluate ¢(t). If ¢(t) > ¢(0), replace t by ¢/2 and repeat. If ¢(t) < ¢#(0), evaluate ¢(2t). If ¢(2t) < ¢(t),
replace t by 2t and repeat. If ¢(t) < ¢(2t), either stop or evaluate ¢(t/2), depending on your level of
paranoia. Continue these steps until either (14) or (15) are satisfied, or ¢ is too large. The first safeguard,
insuring that p is a descent direction, insures that ¢ will not be decreases forever. If we try to minimize an
unbounded function such as ¢(t) = —t, then ¢ could be increased forever.

An important feature of both safeguards is that they all produce the unsafeguarded Newton step if Z is
close enough to a local minimum. This preserves the very desirable local quadratic convergence of Newton’s
method. The first safeguard is not at all expensive, in terms of computer work. The second, line search,
requires us to evaluate V several times. If optimization is expensive, it is usually because evaluating V is
expensive. In those cases, we want to use as few extra evaluation as possible. The minimal safeguard requires
us to evaluate V(Z + 2p) as well as V(Z + p), which is twice as many evaluations as would be needed by the
unsafeguarded method. In view of this, we might, for example, turn off the safeguards if we are pretty sure
they are not needed. However, in my experience, safeguards are usually worth the wait.

3 Multidimensional problems

Much of the above applies immediately to multidimensional problems. If we want to solve n equations for

the n unknowns z1, ..., Z,. The linear approximation (3) is still correct. The only difference is that y, f,
and z are vectors and f' is the n x n jacobian matrix of all first partials with matrix elements:
ofi(@)
! x))., = J
(f ())]k 6$k

The unsafeguarded Newton step can still be computed using (2). The error estimate (5) still implies local
quadratic convergence.

Newton’s method is just one of many iterative methods for solving systems of equations or finding minima
of function. Although Newton’s method may lack robustness, particularly from a poor initial guess, it has
another kind of robustness that accounts for part of its wide use. This is the fact that it is dimensionally
correct. Each of the terms in the sum

pi=> fi'fe
k

has the same units as ;. This allows Newton’s method to work well even when the individual equations
have different units. A mathematician’s way of saying the same thing is that Newton’s method is affine
invariant. That means that if g(z) = Af(Bz) for some invertible matrices, A and B, then Newton’s method
will work precisely as well on g as it does on f. We can view this positively or negatively. We can think
that, effectively, the optimal scaling has already been applied, or that no scaling will help.

3.1 Multidimensional Optimization

Newton’s method also for minimization also goes over naturally to multidimensional problems. The Jacobian
matrix f' is replaced by the Hessian matrix V" | whose entries are given by

oV (z)
" _
Ve = dz;0xy

Optimization problems have the feature that the Newton equations involve a symmetric matrix. Furthermore,
near a nondegenerate local minimum, the Hessian is positive definite. Therefore, we should get the search
direction, p, by solving the Newton equations:

V@)'p=-vV(@) ,

using the Choleski decomposition of the hessian matrix, V"”. This is the unsafeguarded method that has
local quadratic convergence to a local nondegenerate minimum.

The as with one dimensional minimization, there are two safeguards that guarantee that the algorithm
will find a local minimum?, or die trying (i.e. have iterates going to infinity with decreasing function values).
The two safeguards are finding a search direction that is a descent direction, and doing a bisection line search
to make sure that ¢ is within a factor of 2 of a minimizing step size.

In one dimension, the Newton step fails to be a descent direction if the hessian is negative. The hessian
(which is a 1 x 1 matrix in one dimension) will be positive near a nondegenerate local minimum®, but it may
not be positive far away. In more than one dimension, the hessian matrix will be positive definite near a
nondegenerate local minimum but may not be positive definite far away. We want the hessian to be positive
definite because this guarantees that the search direction is a descent direction. Suppose we compute a
search direction, p be solving a linear system of equations

Ap=—-vy V(@) . (16)

Then p will be a descent direction if A is symmetric and positive devinite. To see this, note that if A is
symmetric, then A~! is positive definite if and only if A itself is positive definite. Now calculate the derivative
n (11). This is

V@)= V@) p=-vV@E AT TV a7)

The quantity on the right must be negative if 7V # 0 and A is positive definite.

The safeguard based on this observation is to compute the step using (16) where the matrix A is V"' (z)
if V"(z) is positive definite. Otherwise, we use a positive definite matrix related to V"(z) rather than
V"(z) itself. There are several ways to choose A. I recommend a simple heuristic called the modified
Choleski method. This method starts from the assumption that one would solve the equations (16) using
the Choleski decomposition of A. We start with the hypothesis that A = V" (z) and begin to Choleski
decompose V" (z). If V" (z) is positive definite, we will find a lower triangular matrix, L with LL! = V" (z).
If V"(z) is not positive definite, we will produce an L that does not satisfy LL! = V" (z). We will take
A = LL!. This guarantees that A will be positive definite. It also makes the equations (16) easy to solve.

You might think this is a very complicated way to find a positive definite matrix. After all, the identity
matrix is also positive definite. If we take A = I the equations (16) are particularly easy to solve. Taking
p = —v V(%) is called the gradient method, or the steepest descent method. This usually works poorly in high
dimensional problems met in the real world. I believe this is because it does not make sense dimensionally.
The components of 57V do not have the units of the corresponging components of z. Actually, the modified
Choleski method is not that big a change of the program we would write for unsafeguarded Newton’s method.
In the unsafeguarded computation we would take the Choleski decomposition of V" (Z). In the safeguarded
algorithm we would want to determine whether V"(Z) is positive definite. The simplest way to do this is
to start computing the Choleski decomposition. If we succeed in finding a Choleski facor, then V" (Z) was
positive definite. Otherwise it was not.

Finally, the algorithm. If we are looking for the Choleski factorization of a symmetric matrix, B, LL' = B,
at some point we have compute the diagonal entry, I, of L be solving

bik =l + -+ g

which leads to 12
lek = (brk — Uiy + -+ + ll2c,k—1) . (18)

If the quantities in the square roots are all positive, then we can take the Choleski factorization of B. If any
one of them is negative, then B is not positive definite. The modified Choleski algorithm replaces (18) with
the modified formula

ek = |bre —ljg + - + lIQc,k—1|1/2 . (19)
This leads to the Choleski factor of B, if there is one. Otherwise, it produces a matrix related to B that
is positive definite. Using (19) instead of (18) is one multidimensional generalization of using (12) instead

5As in the one dimensional case, there is a very small chance of finding a stationary point that is not a local minimum. Such
points are called saddle points in multidimensional problems.
6This is the definition of the term nondegenerate in this context.

of (10) in one dimension. In fact, it reduces to this in the one dimensional case. You might have other
suggestions of how to modify the Choleski decomposition when V(%) is not positive definite. This one has
the desirable property that L has the same units, so that A has the same units as V" (Z).

The other safeguard is a line search exactly like the one discussed in the one dimensional context.

With all this, the overall minimization algorithm is as follows. Start with an initial guess, zy. After some
number of iterations, we have a current iterate, xj,. We want to compute a next iterate, x4 from this. For
this purpose, we call z; Z. The new iterate xzp4+1 will be the z’ discussed now. First, compute 7V (%) and
V"(z). Compute the possibly modified Choleski decomposition of V" (%). Use this to solve the equations
(16). Do a line search for a good value of t in V(Z + tp). Then z' = Z + tp is the new iterate. This process
continues until we are close enough to the solution.

