
Principles of Scientific Computing

Monte Carlo methods

Jonathan Goodman

last revised April 20, 2006

1

Monte Carlo means using random numbers in scientific computing. More
precisely, it means using random numbers as a tool to compute something that is
not random. For example1, let X be a random variable and write its expected
value as A = E[X]. If we can generate X1, . . . , Xn, n independent random
variables with the same distribution, then we can make the approximation

A ≈ Ân =
1

n

n∑

k=1

Xk .

The strong law of large numbers states that Ân → A as n → ∞. The Xk and
Ân are random and (depending on the seed, see Section 2) could be different
each time we run the program. Still, the target number, A, is not random.

We emphasize this point by distinguishing between Monte Carlo and simula-
tion. Simulation means producing random variables with a certain distribution
just to look at them. For example, we might have a model of a random process
that produces clouds. We could simulate the model to generate cloud pictures,
either out of scientific interest or for computer graphics. As soon as we start
asking quantitative questions about, say, the average size of a cloud or the
probability that it will rain, we move from pure simulation to Monte Carlo.

The reason for this distinction is that there may be other ways to define A
that make it easier to estimate. This process is called variance reduction, since
most of the error in Â is statistical. Reducing the variance of Â reduces the
statistical error.

We often have a choice between Monte Carlo and deterministic methods.
For example, if X is a one dimensional random variable with probability density
f(x), we can estimate E[X] using a panel integration method, see Section ??.
This probably would be more accurate than Monte Carlo because the Monte
Carlo error is roughly proportional to 1/

√
n for large n, which gives it order of

accuracy roughly 1
2 . The worst panel method given in Section ?? is first order

accurate. The general rule is that deterministic methods are better than Monte
Carlo in any situation where the determinist method is practical.

We are driven to resort to Monte Carlo by the “curse of dimensionality”.
The curse is that the work to solve a problem in many dimensions may grow
exponentially with the dimension. Suppose, for example, that we want to com-
pute an integral over ten variables, an integration in ten dimensional space. If
we approximate the integral using twenty points in each coordinate direction,
the total number of integration points is 2010 ≈ 1013, which is on the edge of
what a computer can do in a day. A Monte Carlo computation might reach
the same accuracy with only, say, 106 points. People often say that the number
of points needed for a given accuracy in Monte Carlo does not depend on the
dimension, and there is some truth to this.

One favorable feature of Monte Carlo is that it is possible to estimate the or-
der of magnitude of statistical error, which is the dominant error in most Monte
Carlo computations. These estimates are often called “error bars” because of

1Section ?? has a quick review of the probability we use here.

2

the way they are indicated on plots of Monte Carlo results. Monte Carlo error
bars are essentially statistical confidence intervals. Monte Carlo practitioners
are among the avid consumers of statistical analysis techniques.

Another feature of Monte Carlo that makes academics happy is that sim-
ple clever ideas can lead to enormous practical improvements in efficiency and
accuracy (which are basically the same thing). This is the main reason I em-
phasize so strongly that, while A is given, the algorithm for estimating it is not.
The search for more accurate alternative algorithms is often called “variance
reduction”. Common variance reduction techniques are importance sampling,
antithetic variates, and control variates.

Many of the examples below are somewhat artificial because I have chosen
not to explain specific applications. The techniques and issues raised here in
the context of toy problems are the main technical points in many real applica-
tions. In many cases, we will start with the probabilistic definition of A, while
in practice, finding this is part of the problem. There are some examples in
later sections of choosing alternate definitions of A to improve the Monte Carlo
calculation.

1 Quick review of probability

This is a quick review of the parts of probability needed for the Monte Carlo
material discussed here. Please skim it to see what notation we are using and
check Section 6 for references if something is unfamiliar.

Probability theory begins with the assumption that there are probabilities
associated to events. Event B has probability Pr(B), which is a number be-
tween 0 and 1 describing what fraction of the time event B would happen if we
could repeat the experiment many times. The exact meaning of probabilities is
debated at length elsewhere.

An event is a set of possible outcomes. The set of all possible outcomes is
called Ω and particular outcomes are called ω. Thus, an event is a subset of the
set of all possible outcomes, B ⊆ Ω. For example, suppose the experiment is to
toss four coins (a penny, a nickle, a dime, and a quarter) on a table and record
whether they were face up (heads) or face down (tails). There are 16 possible
outcomes. The notation THTT means that the penny was face down (tails), the
nickle was up, and the dime and quareter were down. The event “all heads” con-
sists of a single outcome, HHHH . The event B = “more heads than tails” con-
sists of the five outcomes: B = {HHHH, THHH, HTHH, HHTH, HHHT }.

The basic set operations apply to events. For example the intersection of
events B and c is the set of outcomes both in B and in C: ω ∈ B ∩ C means
ω ∈ B and ω ∈ C. For that reason, B ∩ C represents the event “B and
C”. For example, if B is the event “more heads than tails” above and C is
the event “then dime was heads”, then C has 8 outcomes in it, and B ∩ C =
{HHHH, THHH, HTHH, HHHT }. The set union, B ∪ C is ω ∈ B ∪ C if
ω ∈ B or ω ∈ C, so we call it “B or C”. One of the axioms of probability is

Pr(B ∪ C) = Pr(B) + Pr(C) , if B ∩C is empty.

3

Another axiom is that

0 ≤ Pr(B) ≤ 1 , for any event B.

These have many intuitive consequences, such as

B ⊂ C =⇒ Pr(B) ≤ Pr(C) .

A final axiom is Pr(Ω) = 1; for sure something will happen. This really means
that Ω includes every possible outcome.

The conditional “probability of B given C” is given by Bayes’ formula:

Pr(B | C) =
Pr(B ∩ C)

Pr(C)
=

Pr(B and C)

Pr(C)
(1)

Intuitively, this is the probability that a C outcome also is a B outcome. If we
do an experiment and ω ∈ C, Pr(B | C) is the probability that ω ∈ B. The
right side of (1) represents the fraction of C outcomes that also are in B. We
often know Pr(C) and Pr(B | C), and use (1) to calculate Pr(B∩C). Of course,
Pr(C | C) = 1. Events B and C are independent if Pr(B) = Pr(B | C), which is
the same as Pr(B | C) = Pr(B)Pr(C), so B being independent of C is the same
as C being independent of B.

The probability space Ω is finite if it is possible to make a finite list2 of all the
outcomes in Ω: Ω = {ω1, ω2, . . . , ωn}. The space is countable if it is possible to
make a possibly infinite list of all the elements of Ω: Ω = {ω1, ω2, . . . , ωn, . . .}.
We call Ω discrete in both cases. When Ω is discrete, we can specify the prob-
abilities of each outcome

fk = Pr(ω = ωk) .

Then an event B has probability

Pr(B) =
∑

ωk∈B

Pr(ωk) =
∑

ωk∈B

fk .

A discrete random variable3 is a number, X(ω), that depends on the random
outcome, ω. In the coin tossing example, X(ω) could be the number of heads.
The expected value is (defining xk = X(ωk))

E[X] =
∑

ω∈Ω

X(ω)Pr(ω) =
∑

ωk

xkfk .

The probability distribution of a continuous random variable is described by
a probability density function, or PDF, f(x). If X ∈ Rn is an n component
random vector and B ⊆ Rn is an event, then

Pr(B) =

∫

x∈B

f(x)dx .

2Warning: this list is impractically large even in common simple applications.
3Warning: sometimes ω is the random variable and X is a function of a random variable.

4

In one dimension, we also have the cumulative distribution function, or4 CDF:
F (x) = Pr(X ≤ x) =

∫ x

−∞ f(x)dx. For a < b we have Pr(a ≤ x ≤ b) =

F (b)− F (a). Also f(x) = d
dxF (x), so we may write, informally,

Pr(x ≤ X ≤ x + dx) = F (x + dx)− F (x) = f(x)dx . (2)

The expected value is

µ = E[X] =

∫

Rn

xf(x)dx .

in more than one dimension, both sides are n component vectors with compo-
nents

µk = E[Xk] =

∫

Rn

xkf(x)dx .

In one dimension, the variance is

σ2 = var(X) = E
[
(X − µ)

2
]

=

∫ ∞

−∞
(x− µ)

2
f(x)dx .

It is helpful not to distinguish between discrete and continuous random vari-
ables in general discussions. For example, we write E[X] for the expected value
in either case. The probability distribution, or probability law, of X is its prob-
ability density in the continuous case or the discrete probabilities in the discrete
case. We write X ∼ f to indicate that f is the probability density, or the dis-
crete probabilities, of X . We also write X ∼ X ′ to say that X and X ′ have the
same probability distribution. If X and X ′ also are independent, we say they
are iid, for independent and identically distributed. The goal of a simple sampler
(Section 3 below) is generating a sequence Xk ∼ X . We call these samples of
the distribution X .

In more than one dimension, there is the symmetric n×n variance/covariance
matrix (usually called covariance matrix),

C = E
[
(X − µ) (X − µ)

∗]
=

∫

Rn

(x− µ) (x− µ)
∗
f(x)dx , (3)

whose entries are the individual covariances

Cjk = E [(Xj − µj) (Xk − µk)] = cov [Xj , Xk] .

The covariance matrix is positive semidefinite in the sense that for any y ∈ Rn,
y∗Cy ≥ 0. This follows from (3):

y∗Cy = y∗ (E [(X − µ)(X − µ)∗]) y

= E
[(

y∗(X − µ)
)(

(X − µ)∗y
)]

= E
[
W 2

]
≥ 0 ,

4A common convention is to use capital letters for random variables and the corresponding
lower case letter to represent values of that variable.

5

where W = y∗(X −µ). In order for C not to be positive definite, there must be
a y 6= 0 that has E

[
W 2

]
= 0, which means that5 W is identically zero. This

means that the random vector X always lies on the hyperplane in Rn defined
by y∗x = y∗µ.

Let Z = (X, Y) be an n + m dimensional random variable with X being
the first n components and Y being the last m, with probability density f(z) =
f(x, y). The marginal density for X is g(x) =

∫
y∈Rm f(x, y)dy, and the marginal

for Y is h(y) =
∫

x f(x, y)dx. The random variables X and Y are independent
if f(x, y) = g(x)h(y). This is the same as saying that any event depending
only on X is independent of any event depending only on6 Y . The conditional
probability density is the probability density for X alone once the value of Y is
known:

f(x | y) =
f(x, y)∫

x′∈Rn f(x′, y)dx′ . (4)

For n = m = 1 the informal version of this is the same as Bayes’ rule (1). If B
is the event x ≤ X ≤ x + dx and C is the event y ≤ Y ≤ y + dy, then

f(x | y)dx = Pr(B | Y = y)

= Pr(B | y ≤ Y ≤ y + dy)

=
Pr(B and y ≤ Y ≤ y + dy)

Pr(y ≤ Y ≤ y + dy)

The numerator in the last line is f(x, y)dxdy and the denominator is
∫

x′
f(x′, y)dx′dy,

which gives (4).
Suppose X is an n component random variable, Y = u(X), and g(y) is the

probability density of Y . We can compute the expected value of Y in two ways

E [Y] =

∫

y

yg(y)dy = E [u(X)] =

∫

x

u(x)f(x)dx .

The one dimensional informal version is simple if u is one to one (like ex or 1/x,
but not x2). Then y + dy corresponds to u(x + dx) = u(x) + u′(x)dx, so

g(y)dy = Pr(y ≤ Y ≤ y + dy)

= Pr(y ≤ u(X) ≤ y + dy

= Pr(x ≤ X ≤ x + dx)

= f(x)dx where dx =
dy

u′(x)

=
f(x)

u′(x)
dy .

5If W is a random variable with E
[
W 2

]
= 0, then the Pr(W 6= 0) = 0. Probabilists say

that W = 0 almost surely to distinnguish between events that don’t exist (like W 2 = −1) and
events that merely never happen.

6If B ⊆ Rn and C ⊆ Rm, then Pr(X ∈ B and Y ∈ C) = Pr(X ∈ B)Pr(Y ∈ C).

6

This shows that if y = u(x), then g(y) = f(x)/u′(x).
Three common continuous random variables are uniform, exponential, and

gaussian (or normal). In each case there is a standard version and a general
version that is easy to express in terms of the standard version. The standard
uniform random variable, U , has probability density.

f(u) =

{
1 if 0 ≤ u ≤ 1
0 otherwise.

(5)

Because the density is constant, U is equally likely to be anywhere within the
unit interval, [0, 1]. From this we can create the general random variable uni-
formly distributed in the interval [a, b] by Y = (b − a)U + a. The PDF for Y
is

g(y) =

{
1

b−a if a ≤ y ≤ b

0 otherwise.

The exponential random variable, T , with rate constant λ > 0, has PDF

f(t) =

{
λe−λt if 0 ≤ t
0 if t < 0.

(6)

The exponential is a model for the amount of time something (e.g. a light bulb)
will work before it breaks. It is characterized by the Markov property, if it has
not broken by time t, it is as good as new. Let λ characterize the probability
density for breaking right away, which means λdt = Pr(0 ≤ T ≤ dt). The
random time T is exponential if all the conditional probabilities are equal to
this:

Pr(t ≤ T ≤ t + dt | T ≥ t) = Pr(T ≤ dt) = λdt .

Using Bayes’ rule (1), and the observation that Pr(T ≤ t + dt and T ≥ t) =
f(t)dt, this becomes

λdt =
f(t)dt

1− F (t)
,

which implies λ (1− F (t)) = f(t), and, by differentiating, −λf(t) = f ′(t). This
gives f(t) = Ce−λt for t > 0. We find C = λ using

∫ ∞
0 f(t)dt = 1. Independent

exponential inter arrival times generate the Poisson arrival processes. Let Tk,
for k = 1, 2, . . . be independent exponentials with rate λ. The kth arrival time
is

Sk =
∑

j≤k

Tj .

The expected number of arrivals in interval [t1, t2] is λ(t2 − t1) and all arrivals
are independent. This is a fairly good model for the arrivals of telephone calls
at a large phone bank.

We denote the standard normal by Z. The standard normal has PDF

f(z) =
1√
2π

e−z2/2 . (7)

7

The general normal with mean µ and variance σ2 is given by X = σZ + µ and
has PDF

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (8)

We write X ∼ N (µ, σ2) in this case. A standard normal has distribution
N (0, 1). An n component random variable, X , is a multivariate normal with
mean µ and covariance C it has probability density

f(x) =
1

Z
exp ((x− µ)∗H(x− µ)/2) , (9)

where H = C−1 and the normalization constant is (we don’t use this) Z =
1/

√
(2π)ndet(C). The reader should check that this is the same as (8) when

n = 1.
The class of multivariate normals has the linear transformation property.

Suppose L is an m× n matrix with rank m (L is a linear transformation from
Rn to Rm that is onto Rm). If X is an n dimensional multivariate normal, then
Y is an m dimensional multivariate normal. The covariance matrix for Y is
given by

CY = LCXL∗ . (10)

We derive this, taking µ = 0 without loss of generality (why?), as follows:

CY = E [Y Y ∗] = E
[
(LX) ((LX)

∗]
= E [LXX∗L∗] = LE [XX∗]L∗ = LCXL∗ .

The two important theorems for simple Monte Carlo are the law of large
numbers and the central limit theorem. Suppose A = E[X] and Xk for k =
1, 2, . . . is an iid sequence of samples of X . The approximation of A is

Ân =
1

n

n∑

k=1

Xk .

The error is Rn = Ân − A. The law of large numbers states7 that Ân → A as
n→∞. Statisticians call estimators with this property consistent. The central
limit theorem states that if σ2 = var(X), then Rn ≈ N (0, σ2/n). It is easy to
see that

E [Rn] = E
[
Ân

]
−A = 0 ,

and that (recall that A is not random)

var(Rn) = var(Ân) =
1

n
var(X) .

The first property makes the estimator unbiased, the second follows from inde-
pendence of the Xk. The deep part of the central limit theorem is that for large
n, Rn is approximately normal, regardless of the distribution of X (as long as
E

[
X2

]
<∞).

7The Kolmogorov strong law of large numbers is the theorem that limn→∞ Ân = A almost
surely, i.e. that the probability of the limit not existing or being the wrong answer is zero.
More useful for us is the weak law, which states that, for any ǫ > 0, P (|Rn| > ǫ) → 0 as
n → ∞. These are closely related but not the same.

8

2 Random number generators

The random variables used in Monte Carlo are generated by a (pseudo) random
number generator. The procedure double rng() is a perfect random number
generator if

for(k=0; k<n; k++) U[k] = rng();

produces an array of iid standard uniform random variables. The best available
random number generators are perfect in this sense for nearly all practical pur-
poses. The native C/C++ procedure random() is good enough for most Monte
Carlo (I use it).

Bad ones, such as the native rand() in C/C++ and the procedure in Numer-
ical Recipies give incorrect results in common simple cases. If there is a random
number generator of unknown origin being passed from person to person in the
office, do not use it (without a condom).

The computer itself is not random. A pseudo random number generator
simulates randomness without actually being random. The seed is a collection of
m integer variables: int seed[m];. Assuming standard C/C++ 32 bit integers,
the number of bits in the seed is 32 ·m. There is a seed update function Φ(s) and
an output function Ψ(s). The update function produces a new seed: s′ = Φ(s).
The output function produces a floating point number (check the precision)
u = Ψ(s) ∈ [0, 1]. One call u = rng(); has the effect

s←− Φ(s) ; return u = Ψ(s) ; .

The random number generator should come with procedures s = getSeed();

and setSeed(s);, with obvious functions. Most random number generators set
the initial seed to the value of the system clock as a default if the program
has no setSeed(s); command. We use setSeed(s) and getSeed() for two
things. If the program starts with setSeed(s);, then the sequence of seeds
and “random” numbers will be the same each run. This is helpful in debugging
and reproducing results across platforms. The other use is checkpointing. Some
Monte Carlo runs take so long that there is a real chance the computer will
crash during the run. We avoid losing too much work by storing the state of
the computation to disk every so often. If the machine crashes, we restart from
the most recent checkpoint. The random number generator seed is part of the
checkpoint data.

The simplest random number generators use linear congruences. The seed
represents an integer in the range 0 ≤ s < c and Φ is the linear congruence (a
and b positive integers) s′ = Φ(s) = (as + b)mod c. If c > 232, then we need
more than one 32 bit integer variable to store s. Both rand() and random()

are of this type, but rand() has m = 1 and random() has m = 4. The output
is u = Ψ(s) = s/c. The more sophisticated random number generators are of a
similar computational complexity.

9

3 Sampling

A simple sampler is a procedure that produces an independent sample of X each
time it is called. The job of a simple sampler is to turn iid standard uniforms
into samples of some other random variable. A large Monte Carlo computation
may spend most of its time in the sampler and it often is possible to improve
the performance by paying attention to the details of the algorithm and coding.
Monte Carlo practitioners often are amply rewarded for time stpnt tuning their
samplers.

3.1 Bernoulli coin tossing

A Bernoulli random variable with parameter p, or a coin toss, is a random
variable, X , with Pr(X = 1) = p and Pr(X = 0) = 1 − p. If U is a standard
uniform, then p = Pr(U ≤ p). Therefore we can sample X using the code
fragment

X=0; if (rng() <= p) X=1;

Similarly, we can sample a random variable with finitely many values Pr(X =
xk) = pk (with

∑
k pk = 1) by dividing the unit interval into disjoint sub

intervals of length pk. This is all you need, for example, to simulate a simple
random walk or a finite state space Markov chain.

3.2 Exponential

If U is standard uniform, then

T =
−1

λ
ln(U) (11)

is an exponential with rate parameter λ. Before checking this, note first that
U > 0 so ln(U) is defined, and U < 1 so ln(U) is negative and T > 0. Next,
since λ is a rate, it has units of 1/Time, so (11) produces a positive number
with the correct units. The code T = -(1/lambda)*log(rng()); generates
the exponential.

We verify (11) using the informal probability method. Let f(t) be the PDF
of the random variable of (11). We want to show f(t) = λe−λt for t > 0. Let B
be the event t ≤ T ≤ t + dt. This is the same as

t ≤ −1

λ
ln(U) ≤ t + dt ,

which is the same as

−λt− λdt ≤ ln(U) ≤ −λt (all negative),

and, because ex is an increasing function of x,

e−λt−λdt ≤ U ≤ e−λt .

10

Now, e−λt−λdt = e−λte−λdt, and e−λdt = 1− λdt, so this is

e−λt − λdte−λt ≤ U ≤ e−λt .

But this is an interval within [0, 1] of length λdt e−λt, so

f(t)dt = Pr(t ≤ T ≤ t + dt)

= Pr(e−λt − λdte−λt ≤ U ≤ e−λt)

= λdt e−λt ,

which shows that (11) gives an exponential.

3.3 Using the distribution function

In principle, the CDF provides a simple sampler for any one dimensional prob-
ability distribution. If X is a one component random variable with probability
density f(x), the cumulative distrubution function is F (x) = Pr(X ≤ x) =∫

x′≤x
f(x′dx′. Of course 0 ≤ F (x) ≤ 1 for all x, and for any u ∈ [0, 1], there

is an x with F (x) = u. Moreover, if X ∼ f and U = F (X), and u = F (x),
Pr(U ≤ u) = Pr(X ≤ x) = F (x) = u. But Pr(U ≤ u) = u says that U is a
standard uniform. Conversely, we can reverse this reasoning to see that if U
is a standard uniform and F (X) = U , then X has probability density f(x).
The simple sampler is, first take U rng();, then find X with F (X) = U . The
second step may be difficult in applications where F (x) is hard to evaluate or
the equation F (x) = u is hard to solve.

For the exponential random variable,

F (t) = Pr(T ≤ t) =

∫ t

t′=0

λe−λt′dt′ = 1− e−λt .

Solving F (t) = u gives t = −1
λ ln(1 − u). This is the same as the sampler we

had before, since 1− u also is a standard uniform.
For the standard normal we have

F (z) =

∫ z

z′=−∞

1√
2π

e−z′2/2dz′ = N(z) . (12)

There is no elementary8 formula for the cumulative normal, N(z), but there is
good software to evaluate it to nearly double precision accuracy, both for N(z)
and for the inverse cumulative normal z = N−1(u). In many applications,9 this
is the best way to make standard normals. The general X ∼ N (µ, σ2) may be
found using X = σZ + µ.

8An elementary function is one that can be expressed using exponentials, logs, trigonomet-
ric, and algebraic functions only.

9There are applications where the relationship between Z and U is important, not only
the value of Z. These include sampling using normal copulas, and quasi (low discrepency
sequence) Monte Carlo.

11

3.4 The Box Muller method

The Box Muller algorithm generates two independent standard normals from
two independent standard uniforms. The formulas are

R =
√
−2 ln(U1)

Θ = 2πU2

Z1 = R cos(Θ)

Z2 = R sin(Θ) .

We can make a thousand independent standard normals by making a thousand
standard uniforms then using them in pairs to generate five hunderd pairs of
independent standard normals.

3.5 Multivariate normals

Let X ∈ Rn be a multivariate normal random variable with mean zero and
covariance matrix C. We can sample X using the Choleski factorization of C,
which is C LLT , where L is lower triangular. Note that L exists because C
is symmetric and positive definite. Let Z ∈ Rn be a vector of n independent
standard normals generated using Box Muller or any other way. The covariance
matrix of Z is I (check this). Therefore, if

X = LZ , (13)

then X is multivariate normal (because it is a linear transformation of a multi-
variate normal) and has covariance matrix (see (10)

CX = LILt = C .

If we want a multivariate normal with mean µ ∈ Rn, we simply take X = LZ+µ.

3.6 Rejection

The rejection algorithm turns samples from one density into samples of another.
One ingredient is a simple sampler for the trial distribution, or proposal distri-
bution. Suppose gSamp() produces iid samples from the PDF g(x). The other
ingredient is an acceptance probability, p(x), with 0 ≤ p(x) ≤ 1 for all x. The
algorithm generates a trial X ∼ g and accepts this trial value with probability
p(X). The process is repeated until the first acceptance. All this happens in

while (rng() > p(X = gSamp())); (14)

We accept X is U ≤ p(X), so U > p(X) means reject and try again. Each time
we generate a new X , which must be independent of all previous ones.

The X returned by (14) has PDF

f(x) =
1

Z
p(x)g(x) , (15)

12

where Z is a normalization constant that insures that
∫

f(x)dx = 1:

Z =

∫

x∈Rn

p(x)g(x)dx . (16)

This shows that Z is the probability that any given trial will be an acceptance.
The formula (15) shows that rejection goes from g to f by thinning out samples
in regions where f < g by rejecting some of them. We verify it informally in
the one dimensional setting:

f(x)dx = Pr (accepted X ∈ (x, x + dx))

= Pr (X ∈ (x, x + dx) | acceptance)

=
Pr (X ∈ (x, x + dx) and accepted)

Pr (accepted)

=
g(x)dxp(x)

Z
.

An argument like this also shows the correctness of (15) also for multivariate
random variables.

We can use rejection to generate normals from exponentials. Suppose g(x) =

e−x for x > 0, corresponding to a standard exponential, and f(x) = 2√
2π

e−x2/2

for x > 0, corresponding to the positive half of the standard normal distribution.
Then (15) becomes

p(x) = Z
f(x)

g(x)

= Z · 2√
2π
· e

−x2/2

e−x

p(x) = Z · 2√
2π

ex−x2/2 . (17)

This would be a formula for p(x) if we know the constant, Z.
We maximize the efficiency of the algorithm by making Z, the overall prob-

ability of acceptance, as large as possible, subject to the constraint p(x) ≤ 1 for
all x. Therefore, we find the x that maximizes the right side:

ex−x2/2 = max =⇒ x− x2

2
= max =⇒ xmax = 1 .

Choosing Z so that the maximum of p(x) is one gives

1 = pmax = Z · 2√
2π

exmax−x2

max/2 = Z
2√
2π

e1/2 ,

so

p(x) =
1√
e
ex−x2/2 . (18)

13

It is impossible to go the other way. If we try to generate a standard expo-
nential from a positive standard normal we get accetpance probability related
to the recripocal to (17):

p(x) = Z

√
2π

2
ex2/2−x .

This gives p(x)→ ∞ as x→ ∞ for any Z > 0. The normal has thinner10 tails
than the exponential. It is possible to start with an exponential and thin the
tails using rejection to get a Gaussian (Note: (17) has p(x) → 0 as x → ∞.).
However, rejection cannot fatten the tails by more than a factor of 1

Z . In
particular, rejection cannot fatten a Gaussian tail to an exponential.

The efficiency of a rejection sampler is the expected number of trials needed
to generate a sample. Let N be the number of samples to get a success. The
efficiency is

E[N] = 1 · Pr(N = 1) + 2 · Pr(N = 2) + · · ·
We already saw that Pr(N = 1) = Z. To have N = 2, we need first a rejection
then an acceptance, so Pr(N = 2) = (1 − Z)Z. Similarly, Pr(N = k) =
(1− Z)k−1Z. Finally, we have the geometric series formulas for 0 < r < 1:

∞∑

k=0

rk =
1

1− r
,

∞∑

k=1

krk−1 =

∞∑

k=0

krk−1 =
d

dr

∞∑

k=0

rk =
1

(1 − r)2
.

Applying these to r = 1− Z gives E[N] = 1
Z . In generating a standard normal

from a standatd exponential, we get

Z =

√
π

2e
≈ .76 .

The sampler is efficient in that more than 75% of the trials are successes.
Rejection samplers for other distributions, particularly in high dimensions,

can be much worse. We give a rejection algorithm for finding a random point
uniformly distributed inside the unit ball n dimensions. The algorithm is correct
for any n in the sense that it produces at the end of the day a random point with
the desired probability density. For small n, it even works in practice and is not
such a bad idea. However, for large n the algorithm is very inefficient. In fact, Z
is an exponentially decreasing function of n. It would take more than a century
on any present computer to generate a point uniformly distributed inside the
unit ball in n = 100 dimensions this way. Fortunately, there are better ways.

A point in n dimensions is x = (x1, . . . , xn). The unit ball is the set of points
with

∑n
k=1 x2

k ≤ 1. We will use a trial density that is uniform inside the smallest
(hyper)cube that contains the unit ball. This is the cube with −1 ≤ xk ≤ 1 for
each k. The uniform density in this cube is

g(x1, . . . , xn) =

{
2−n if |xk| ≤ 1 for all k = 1, . . . , n
0 otherwise.

10The tails of a probability density are the parts for large x, where the graph of f(x) gets
thinner, like the tail of a mouse.

14

This density is a product of the one dimensional uniform densities, so we can
sample it by choosing n independent standard uniforms:

for(k = 0; k < n; k++) x[k] = 2*rng() - 1; // unif in [-1,1].

We get a random point inside the unit ball if we simply reject samples outside
the ball:

while(1) { // The rejection loop (possibly infinite!)

for(k = 0; k < n; k++) x[k] = 2*rng() - 1; // Generate a trial vector

// of independent uniforms

// in [-1,1].

ssq = 0; // ssq means "sum of squares"

for(k = 0; k < n; k++) ssq+= x[k]*x[k];

if (ssq <= 1.) break ; // You accepted and are done with the loop.

// Otherwise go back and do it again.

}

The probability of accepting in a given trial is equal to the ratio of the
volume (or area in 2D) of the ball to the cube that contains it. In 2D this is

area(disk)

area(square)
=

π

4
≈ .79 ,

which is pretty healthy. In 3D it is

vol(ball)

vol(cube)
=

4π
3

8
≈ .52 ,

Table 1 shows what happens as the dimension increases. By the time the di-
mension reaches n = 10, the expected number of trials to get a success is about
1/.0025 = 400, which is slow but not entirely impractical. For dimension n = 40,
the expected number of trials has grown to about 3 × 1020, which is entirely
impractical. Monte Carlo simulations in more than 40 dimensions are common.
The last column of the table shows that the acceptance probability goes to zero
faster than any exponential of the form e−cn, because the numbers that would
be c, listed in the table, increase with n.

3.7 Histograms and testing

Any piece of scientific software is presumed wrong until it proves itself correct
in tests. We can test a one dimensional sampler using a histogram. Divide the
x axis into neighboring bins of length ∆x centered about bin centers xj = j∆x.
The corresponding bins are Bj = [xj − ∆x

2 , xj + ∆x
2]. With n samples, the

bin counts are11 Nj = # {Xk ∈ Bj , 1 ≤ k ≤ n}. The probability that a given
sample lands in Bj is Pr(Bj) =

∫
x∈Bj

f(x)dx ≈ ∆xf(xj). The expected bin

count is E[Nj] ≈ n∆xf(xj), and the standard deviation (See Section 4) is

11Here # {· · ·} means the number of elements in the set {· · ·}.

15

Table 1: Acceptence fractions for producing a random point in the unit ball in
n dimensions by rejection.
dimension vol(ball) vol(cube) ratio −ln(ratio)/dim

2 π 4 .79 .12
3 4π/3 8 .52 .22
4 π2/2 16 .31 .29

10 2πn/2/(nΓ(n/2)) 2n .0025 .60

20 2πn/2/(nΓ(n/2)) 2n 2.5× 10−8 .88

40 2πn/2/(nΓ(n/2)) 2n 3.3× 10−21 1.2

σNj
≈
√

n∆x
√

f(xj). We generate the samples and plot the Nj and E[Nj] on
the same plot. If E[Nj] ≫ σNj

, then the two curves should be relatively close.
This condition is

1√
n∆x

≪
√

f(xj) .

In particular, if f is of order one, ∆x = .01, and n = 106, we should have reason-
able agreement if the sampler is correct. If ∆x is too large, the approximation∫

x∈Bj
f(x)dx ≈ ∆xf(xj) will not hold. If ∆x is too small, the histogram will

not be accurate.
It is harder to test higher dimensional random variables. We can test two and

possibly three dimensional random variables using multidimensional histograms.
We can test that various one dimensional functions of the random X have the
right distributions. For example, the distributions of R2 =

∑
X2

k = ‖X‖2l2 and
Y =

∑
akXk = a ·X are easy to figure out if X is uniformly distributed in the

ball.

4 Error bars

It is relatively easy to estimate the order of magnitude of the error in most Monte
Carlo computations. Monte Carlo computations are likely to have large errors
(see Chapter ??). Therefore, all Monte Carlo computations (except possibly
those for senior management) should report error estimates.

Suppose X is a scalar random variable and we approximate A = E[X] by

Ân =
1

n

n∑

k=1

Xk .

The central limit theorem states that

Rn = Ân −A ≈ σnZ , (19)

where σn is the standard deviation of Ân and Z ∼ N (0, 1). A simple calculation

shows that σn = 1√
n

√
σ2, where σ2 = var(X) = E[(X − A)2]. We estimate σ2

16

using12

σ̂2
n =

1

n

n∑

k=1

(
Xk − Ân

)2

, (20)

then take

σ̂n =
1√
n

√
σ̂2

n .

Since Z in (19) will be of order one, Rn will be of order σ̂n.

We typically report Monte carlo data in the form A = Ân± σ̂n. Graphically,
we plot Ân as a circle (or some other symbol) and σ̂n using a bar of length 2σ̂n

with Ân in the center. This is the error bar.

We can think of the error bar as the interval
[
Ân − σ̂n, Ân + σ̂n

]
. More gen-

erally, we can consider k standard deviation error bars
[
Ân − kσ̂n, Ân + kσ̂n

]
.

In statistics, these intervals are called confidence intervals and the confidence is
the probability that A is within the conficence interval. The central limit the-
orem (and numerical computations of integrals of gaussians) tells us that one
standard deviation error bars have have confidence

Pr
(
A ∈

[
Ân − σ̂n, Ân + σ̂n

])
≈ 66% ,

and and two standard deviation error bars have

Pr
(
A ∈

[
Ân − 2σ̂n, Ân + 2σ̂n

])
≈ 95% ,

It is the custom in Monte Carlo practice to plot and report one standard devia-
tion error bars. This requires the consumer to understand that the exact answer
is outside the error bar about a third of the time. Plotting two or three standard
deviation error bars would be safer but would give an inaccurate picture of the
probable error size.

5 Software: performance issues

Monte Carlo methods raises many performance issues. Naive coding following
the text can lead to poor performance. Two significant factors are frequent
branching and frequent procedure calls.

6 Resources and further reading

There are many good books on the probability background for Monte Carlo,
the book by Sheldon Ross at the basic level, and the book by Sam Karlin and
Gregory Taylor for more the ambitious. Good books on Monte Carlo include

12Sometimes (20) is given with n − 1 rather than n in the denominator. This can be a
serious issue in practical statistics with small datasets. But Monte Carlo datasets should be
large enough that the difference between n and n − 1 is irrelevent.

17

the still surprisingly useful book by Hammersley and Handscomb, the physicists’
book (which gets the math right) by Mal Kalos and Paula Whitlock, and the
broader book by George Fishman. I also am preparing a book on Monte Carlo,
whth many parts already posted.

Markov Chain Monte Carlo, or MCMC, is the most important topic left
out here. Most multivariate random variables not discussed here cannot be
sampled in a practical way by the direct sampling methods, but do have indirect
dynamic samplers. The ability to sample essentially arbitrary distributions has
led to an explosion of applications in statistics (sampling Bayesian posterior
distributions, Monte Carlo calibration of statistical tests, etc.), and operations
research (improved rare event sampling, etc.).

Choosing a good random number generator is important yet subtle. The
native C/C++ function rand() is suitable only for the simplest applications
because it cycles after only a billion samples. The function random() is much
better. The random number generators in Matlab are good, which cannot be
said for the generators in other scientific computing and visualization packages.
Joseph Marsaglia has a web site with the latest and best random number gen-
erators.

7 Exercises

1. What is wrong with the following piece of code?

for (k = 0; k < n; k++) {

setSeed(s)

U[k] = rng();

}

2. Calculate the distribution function for an exponential random variable
with rate constant λ. Show that the sampler using the distribution func-
tion given in Section 3.3 is equivalent to the one given in Section 3.2. Note
that if U is a standard uniform, then 1− U also is standard uniform.

3. If S1 and S2 are independent standard exponentials, then T = S1 + S2

has PDF f(t) = te−t.

(a) Write a simple sampler of T that generates S1 and S2 then takes
T = S1 + S2.

(b) Write a simpler sampler of T that uses rejection from an exponential
trial. The trial density must have λ < 1. Why? Look for a value of
λ that gives reasonable efficiency. Can you find the optimal λ?

(c) For each sampler, use the histogram method to verify its correctness.

(d) Program the Box Muller algorithm and verify the results using the
histogram method.

18

4. A Poisson random walk has a position, X(t) that starts with X(0) = 0. At
each time Tk of a Poisson process with rate λ, the position moves (jumps)
by a N (0, σ2), which means that X(Tk + 0) = X(Tk − 0) + σZk with iid
standard normal Zk. Write a program to simulate the Poisson random
walk and determine A = Pr(X(T) > B). Use (but do not hard wire) two
parameter sets:

(a) T = 1, λ = 4, σ = .5, and B = 1.

(b) T = 1, λ = 20, σ = .2, and B = 2.

Use standard error bars. In each case, choose a sample size, n, so that
you calculate the answer to 5% relative accuracy and report the sample
size needed for this.

19

