The fourth order four stage Runge Kutta method

We are solving $\dot{y}(t)=f(y(t), t)$, which is a system of k first order differential equations. For each t,

$$
y(t)=\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{k}(t)
\end{array}\right)
$$

We have an estimate of $y^{(n)} \approx y\left(t_{n}\right)$. We have a time step Δt so that $t_{n+1}=$ $t_{n}+\Delta t$. This does not imply that Δt is the same from one time step to the next. The four stages are

$$
\begin{align*}
k^{(n, 1)} & =\Delta t f\left(y^{(n)}, t_{n}\right) \tag{1}\\
k^{(n, 2)} & =\Delta t f\left(y^{(n)}+\frac{1}{2} k^{(n, 1)}, t_{n}+\frac{\Delta t}{2}\right) \tag{2}\\
k^{(n, 3)} & =\Delta t f\left(y^{(n)}+\frac{1}{2} k^{(n, 2)}, t_{n}+\frac{\Delta t}{2}\right) \tag{3}\\
k^{(n, 4)} & =\Delta t f\left(y^{(n)}+k^{(n, 3)}, t_{n}+\Delta t\right) \tag{4}
\end{align*}
$$

To take a time step, we take a combination of the four stages:

$$
\begin{equation*}
y^{(n+1)}=y^{(n)}+\frac{1}{6}\left(k^{(n, 1)}+2 k^{(n, 2)}+2 k^{(n, 3)}+k^{(n, 4)}\right) . \tag{5}
\end{equation*}
$$

In the computer implementation, we need to keep the four k vectors, but we do need need separate storage for each value of n.

