
Scienti�c Computing

Chapter III

Numerical Linear Algebra II, Factorization

algorithms

Jonathan Goodman

Courant Institute of Mathemaical Sciences

Last revised February 25, 2002

1 Introduction

As we say earlier, many algorithms of numerical linear algebra may be for-
mulated as ways to calculate matrix factorizations. This point of view gives
conceptual insight. Since computing the factorization is usually much more ex-
pensive than using it, storing the factors makes it possible, for example, to solve
many systems of equations, Ax = b, with the same the same A but di�erent b
(and therefore di�erent x), faster than if we had started over each time. Finally,
when we seek high performance, we might take advantage of alternative ways
to organize computations of the factors.

This chapter does not cover the many factorization algorithms in great detail.
This material is available, for example, in the book of Golub and van Loan and
many other places. My aim is to make the reader aware of what the computer
does (roughly), and how long it should take. First I explain how the classical
Gaussian elimination algorithm may be viewed as a matrix factorization, the
LU factorization. The algorithm presented is not the practical one because it
does not include \pivoting". Next, I discuss the Choleski (LL�) decomposi-
tion, which is a natural version of LU for symmetric positive de�nite matrices.
Understanding the details of the Choleski decomposition will be useful later
when we study optimization methods and still later when we discuss sampling
multivariate normal random variables with correlations. Finally, we show how
to compute matrix factorizations, such as the QR decomposition, that lead to
orthogonal matrices.

1



2 Gauss elimination and the LU decomposition

Gauss elimination is a simple systematic way to solve systems of linear equations.
For example, suppose we have the system of equations

e1 : 2x+ y + z = 4 ;
e2 : x+ 2y + z = 3 ;
e3 : x+ y + 2z = 4 :

To �nd the values of x, y, and z, we �rst try to write equations that contain
fewer variables, and eventualy just one. We can \eliminate" x from the equation
e2 by subtracting 1

2
of both sides of e1 from e2.

e02 : x+ 2y + z � 1

2
(2x+ y + z) = 3� 1

2
� 4 ;

Which involves just y and z:

e02 :
3

2
y +

1

2
z = 2 :

We can do the same to eliminate x from e3, subtracting
1

2
of each side of e1

from the corresponding side of e3:

e03 : x+ y + 2z � 1

2
(2x+ y + z) = 4� 1

2
� 4 ;

which gives

e0
3
:

1

2
y +

3

2
z = 2 :

We now have a pair of equations, e0
2
, and e0

3
that involve only y and z. We

can use e0
2
to eliminate y from e3; we subtract 1

3
of each side of e0

2
from the

corresponding side of e03 to get:

e00
3
:

1

2
y +

3

2
z � 1

3
(
3

2
y +

1

2
z) = 2� 1

3
� 2 ;

which simpli�es to:

e00
3
:

4

3
z =

5

3
:

This completes the elimination phase. In the \back substitution" phase we
successively �nd the values of z, y, and x. First, from e003 we immediately �nd

z =
5

4
:

Then we use e0
2
(not e0

3
) to get y:

3

2
y +

1

2
� 5
4
= 1 =) y =

1

4
:

2



Lastly, e1 yields x:

2x+
1

4
+

5

4
= 4 =) x =

9

4
:

The reader can (and should) check that x = 9

4
, y = 1

4
, and z = 5

4
satis�es the

original equations e1, e2, and e3.
The above steps may be formulated in matrix terms. The equations, e1, e2,

and e3, may be assembled into a single equation involving a matrix and two
vectors: 0

@
2 1 1
1 2 1
1 1 2

1
A �
0
@

x
y
z

1
A =

0
@

4
3
4

1
A :

The operation of eliminating x from the second equation may be carried out
by multiplying this equation from the left on both sides by the \elementary"
matrix

E21 =

0
@

1 0 0
� 1

2
1 0

0 0 1

1
A :

The result is
0
@

1 0 0
� 1

2
1 0

0 0 1

1
A �
0
@

2 1 1
1 2 1
1 1 2

1
A �
0
@

x
y
z

1
A =

0
@

1 0 0
� 1

2
1 0

0 0 1

1
A �
0
@

4
3
4

1
A :

Doing the matrix multiplication gives

0
@

2 1 1
0 3

2

1

2

1 1 2

1
A �
0
@

x
y
z

1
A =

0
@

4
1
4

1
A :

Note that the middle row of the matrix contains the coeÆcients from e0
2
. Simi-

larly, the e�ect of eliminating x from e3 comes from multiplying both sides from
the left by the elementary matrix

E31 =

0
@

1 0 0
0 1 0
� 1

2
0 1

1
A :

Which gives

0
@

1 0 0
0 1 0
� 1

2
0 1

1
A �
0
@

2 1 1
0 3

2

1

2

1 1 2

1
A �
0
@

x
y
z

1
A =

0
@

1 0 0
0 1 0
� 1

2
0 1

1
A �
0
@

4
1
4

1
A ;

which multiplies out to become

0
@

2 1 1
0 3

2

1

2

0 1

2

3

2

1
A �
0
@

x
y
z

1
A =

0
@

4
1
2

1
A :

3



This is the matrix form of three equations e1, e
0

2
, and e0

3
. The last elimination

step removes y from the last equation using

E32 =

0
@

1 0 0
0 1 0
0 � 1

3
1

1
A :

This gives

0
@

1 0 0
0 1 0
0 � 1

3
1

1
A �
0
@

2 1 1
0 3

2

1

2

0 1

2

3

2

1
A �
0
@

x
y
z

1
A =

0
@

1 0 0
0 1 0
0 � 1

3
1

1
A �
0
@

4
1
2

1
A ;

which multiplies out to be

0
@

2 1 1
0 3

2

1

2

0 0 4

3

1
A �
0
@

x
y
z

1
A =

0
@

4
1
5

3

1
A : (1)

Because the matrix in (1) is upper triangular, we may solve for z, then y, then
x, as before. The matrix equation (1) is equivalent to the system e1, e

0

2
, and e00

3
.

We can summarize this sequence of multiplications with elementary matrices
by saying that we multiplied the original matrix,

A =

0
@

2 1 1
1 2 1
1 1 2

1
A

�rst by E21, then by E31, then by E32 to get the upper triangular matrix

U =

0
@

2 1 1
0 3

2

1

2

0 0 4

3

1
A :

This may be written formally as

E32E31E21A = U :

We turn this into a factorization of A by multiplying successively by the inverses
of the elementary matrices:

A = E�1

21
E�1

31
E�1

32
U :

It is easy to check that we get the inverse of an elementary matrix, Ejk simply
by reversing the sign of the number below the diagonal. For example,

E�1

31
=

0
@

1 0 0
0 1 0
1

2
0 1

1
A

4



since 0
@

1 0 0
0 1 0
1

2
0 1

1
A �
0
@

1 0 0
0 1 0
� 1

2
0 1

1
A =

0
@

1 0 0
0 1 0
0 0 1

1
A :

Also, the product of the elementary matrices just has the nonzero subdiagonal
elements of all of them in their respective positions (check this):

L = E�1

21
E�1

31
E�1

32

=

0
@

1 0 0
1

2
1 0

0 0 1

1
A �
0
@

1 0 0
0 1 0
1

2
0 1

1
A �
0
@

1 0 0
0 1 0
0 1

3
1

1
A

=

0
@

1 0 0
1

2
1 0

1

2

1

3
1

1
A

Finally, the reader should verify that we actually have A = LU :
0
@

2 1 1
1 2 1
1 1 2

1
A =

0
@

1 0 0
1

2
1 0

1

2

1

3
1

1
A �
0
@

2 1 1
0 3

2

1

2

0 0 4

3

1
A :

Now we know that performing Gauss elimination on the three equations e1,
e2, and e3 is equivalent to �nding an LU factorization of A where the lower
triangular factor has ones on its diagonal.

Finally, we can turn this process around and seek the elements of L and U
directly from the structure of L and U . In terms of the (supposedly unknown)
entries of L and U , the matrix factorization becomes

0
@

1 0 0
l21 1 0
l31 l32 1

1
A �
0
@

u11 u12 u13
0 u22 u23
0 0 u33

1
A =

0
@

2 1 1
1 2 1
1 1 2

1
A : (2)

We may �nd the entries ljk and ujk one by one by multiplying out the product
on the left and comparing to the known element on the right. For the (1; 1)
element, we get

1 � u11 = 2 ;

Which gives u11 = 2, as we already know. With this, we may calculate either
l21 from matching the (2; 1) entries, or u12 from the (1; 2) entries. The former
gives

l21 � u11 = 1 ;

which, given u11 = 2, gives l21 =
1

2
. The latter gives

1 � u12 = 1 :

and then u12 = 1. These calculations show that the LU factorization, if it exists,
is unique (remembering to put ones on the diagonal of L). They also show that
there is some freedom in the order in which we compute the ljk and ujk.

5



We may compute the LU factors of A without knowing the right hand side

0
@

4
3
4

1
A :

If we know L and U and then learn the right hand side, we may �nd x, y, and
z in a two stage process that begins with \forward" substitution and concludes
with the familiar back substitution. In matrix terms, we have

L � U �
0
@

x
y
z

1
A =

0
@

4
3
4

1
A :

We �rst �nd an intermediate vector, x0, y0, and z0 by solving

L �
0
@

x0

y0

z0

1
A =

0
@

4
3
4

1
A ; (3)

and then solving

U �
0
@

x
y
z

1
A =

0
@

x0

y0

z0

1
A : (4)

Multiplying (4) by L, and using (3) and LU = A gives

A �
0
@

x0

y0

z0

1
A =

0
@

4
3
4

1
A :

Since the equations (3) are lower triangular, we may �nd the elements x0, y0,
and z0 one by one. First, we get 1 � x0 = 4 (because l11 = 1), so x0 = 4 Next we
get l21x

0 + 1 � y0 = 3. Since l21 =
1

2
, this gives y0 = 1. In a similar way, we get

z0 = 5

3
. With this information, and the known values of the ujk , (4) becomes

0
@

2 1 1
0 3

2

1

2

0 0 4

3

1
A �
0
@

x
y
z

1
A =

0
@

4
1
5

3

1
A ;

which is the same system of equations we arrived at by applying elementary
matrices to A and the right hand side above. Recall that the elements of L
contain all the numbers we used in Gauss elimination. We have just seen that
the forward elimination step, which uses L, is equivalent to applying the same
elementary operations to the right hand side. Our LU approach to solving linear
systems of equations is entirely equivalent to the Gauss elimination approach.

The general LU algorithm for solving linear systems should be clear from
this example. We have an n�n matrix A, and a column vector b 2 Rn, and we
wish to �nd another column vector x so that Ax = b. This is equivalent to n

6



linear equations in the n unknowns x1, : : :, xn. We �rst compute the LU decom-
position of A, in one of several related ways. Then we solve a \lower triangular"
system of equations Ly = b using forward elimination. The intermediate vector
entries, y1, : : :, yn, are what we would have gotten had we applied Gauss elimi-
nation to the right hand side and A at the same time. Finally, we perform back
substition, �nding x with Ux = y. Multiplying this by L and using LU = a and
Ly = b, we see that this x solves our problem.

Some of the motivation for the factorization approach come from the work
involved. Solving a system of equations requires on the order of n3 operations.
This is also the work required to compute the LU factors. The forward and
back substitutions require only O(n2) operations, which is less than O(n3) by a
factor of n. If we have many systems of equations to solve, we should factor A
once and use the factors repeatedly.

The elimination and factorization algorithms just described may fail or be
numerically unstable even when A is well conditioned. To get a stable algorithm,
we need to introduce \pivoting". In the present context1 this means adaptively
reordering the equations or the unknowns so that the elements of L do not grow.
Details are in the references.

3 Choleski factorization

A real matrix, A, is symmetric if A� = A. A real matrix is positive de�nite if
x�Ax > 0 for any column vector x 2 Rn with x 6= 0. We write SPD for \real
positive de�nite". It is possible for a matrix to be positive de�nite without being
symmetric, but it is rare that we are interested in that fact. If we are asking
whether a matrix is positive de�nite, we probably already know the matrix is
symmetric. For example, a function of n variables is strictly convex at a point
if it's Hessian matrix (the matrix of all second partial derivatives) is positive
de�nite. The Hessian is symmetric no matter what because \mixed partial
derivatives commute": @2f=@xj@xk = @2f=@xk@xj . Another example would
be a statistical estimate of a covariance matrix for several random variables.
It is very unlikely that we would ever see a nonsymmetric matrix, no matter
how silly the estimator. If A has complex entries, the anologue of symmetric is
Hermitian, also written A� = A. The de�nition of positive de�niteness is also
the same, but now x 2 Cn rather than Rn. We focus on real SPD matrices here,
as they are more common in computational applications. It might be hardto
tell whether a given A is SPD, but there are some checks to rule it out. For
example, since e�kAek = akk , the diagonal entries in an SPD matrix must be
positive. Also, a diagonal k�k block of any size of an SPD matrix must be SPD
because you can choose \trial vectors", x with only these k entries not zero.

The Choleski, or LL� factorization is a special version of the LU factorization
adapted to SPD matrices. A theorem of linear algebra (see a reference) states
that A is SPD if and only if A = LL� for some nonsingular lower triangular
matrix, L. In view of this theorem, a computational algorithm for computing L

1The term \pivot" means something di�erent, for example, in linear programming.

7



can be used as a test of positive de�niteness. Run the algorithm. If it produces
L with no zeros on the diagonal, your original A was positive de�nite. If it
shows there is no such L, then A was not positive de�nite. We do not prove
the theorem here, but one part is easy: if A = LL� then x�Ax = x�LL�x =
(L�x)� � (L�x) = kL�xk2l2 . The length of L�x cannot be negative and can be
zero only if x = 0 or L is singular.

As with the LU factorization, we can �nd the entries of L from the equations
for the entries of LL� = A one at a time, in a certain order.

0
BBBBBBB@

l11 0 0 � � � 0

l21 l22 0 � � � ...

l31 l32 l33
. . .

...
...

. . . 0
ln1 ln2 � � � lnn

1
CCCCCCCA
�

0
BBBBBB@

l11 l21 l31 � � � ln1
0 l22 l32 � � � ln2

0 0 l33
. . .

...
...

...
. . .

0 0 � � � lnn

1
CCCCCCA

=

0
BBBBBB@

a11 a21 a31 � � � an1
a21 a22 a32 � � � an2

a31 a32 a33
. . .

...
...

...
. . .

an1 an2 � � � ann

1
CCCCCCA

Notice that we have written, for example, a32 for the (2; 3) entry because A is
symmetric. We start with the top left corner. Doing the matrix multiplication
gives

l2
11

= a11 =) l11 =
p
a11 :

The square root is real because a11 > 0 because A is positive de�nite. Next we
match the (2; 1) entry of A. The matrix multiplication gives:

l21l11 = a21 =) l21 =
1

l11
a21 :

The denominator is not zero because l11 > 0 because a11 > 0. We could continue
in this way, to get the whole �rst column of L. Alternatively, we could match
(2; 2) entries to get l22:

l2
21
+ l2

22
= a22 =) l22 =

q
a22 � l2

21
:

It is possible to show (see references) that if the square root on the right is not
real, then A was not positive de�nite. Given l22, we can now compute the rest
of the second column of L. For example, matching (3; 2) entries gives:

l31 � l21 + l32 � l22 = a32 =) l32 =
1

l22
(a32 � l31 � l21) :

8



Continuing in this way, we can �nd all the entries of L. It is clear that if L
exists and if we always use the positive square root, then all the entries of L are
uniquely determined.

Once we have the Choleski decomposition of A, we can solve systems of
equations Ax = b using forward and back substitution, as we did for the LU
factorization.

9


