
Scienti�c Computing, Spring 2002 (http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2002/)

Assignment 1.

Given January 24, due January 30.

Objective: To explore computer arithmetic.

1. The �bonacci numbers, fk, are de�ned by f0 = 1, f1 = 1, and

fk+1 = fk + fk�1 (1)

for any integer k > 1. A small perturbation of them, the \pib numbers" (\p" instead
of \f" to indicate either the pentium bug or perturbation), pk, are de�ned by p0 = 1,
p1 = 1, and

pk+1 = c � pk + pk�1 (2)

for any integer k > 1, where c = 1 +
p
3=100.

a. Make a plot of log(fn) and log(pn) as a function of n. On the plot, mark 1=�mach
for single and double precision IEEE 
oating point arithmetic. This can be useful
in answering the questions below.

b. For various n values, compute the fk for k = 2; 3; : : : ; n using (1). Then rewrite
(1) to express fk�1 in terms or fk and fk+1. Use the computed fn and fn�1 to
recompute fk for k = n�2; n�3; : : : ; 0. Make a plot of the di�erence between the
original f0 = 1 and the recomputed f0 as a function of n. What n values result
in no accuracy for the recomputed f0? How do the results in single and double
precision di�er?

c. Repeat b. for the pib numbers. Comment on the striking di�erence in the way
precision is lost in these two cases. Which is more typical? Extra credit: predict
the order of magnitude of the error in recomputing p0 using what you may know
about recurrence relations and what you should know about computer arithmetic.

2. The binomial coeÆcients, an;k, are de�ned by

an;k =

 
n
k

!
=

n!

k!(n� k)!
(3)

To compute the an;k, for a given n, start with an;0 = 1 and then use the recurrence
relation an;k+1 =

n�k
k+1

an;k.

(a) For a �xed of n, compute the an;k this way, noting the largest an;k and the accuracy
with which an;n = 1 is computed. Do this in single and double precision. Why is
it that roundo� is not a problem here as it was in problem (1)?

1



b. Use the algorithm of part (a) to compute

E(k) =
1

2n

nX
k=0

kan;k =
n

2
: (4)

In this equation, we think of k as a random variable, the number of heads in n
tosses of a fair coin, with E(k) being the expected value of k. This depends on n.
Write a program without any safeguards against over
ow or zero divide (this time

only!)1. Show (both in single and double precision) that the computed answer has
high accuracy as long as the intermediate results are within the range of 
oating
point numbers. As with (a), explain how the computer gets an accurate, small,
answer when the intermediate numbers have such a wide range of values. Why is
cancellation not a problem? Note the advantage of a wider range of values: we
can compute E(k) for much larger n in double precision. Print E(k) as computed
by (4) and Mn = maxk an;k. For large n, one should be inf and the other NaN.
Why?

c. For fairly large n, plot an;k as a function of k for a range of k chosen to illuminate
the interesting \bell shaped" behavior of the an;k near their maximum.

d. (Extra credit, and lots of it!) Find a way to compute

S(k) =
nX

k=0

(�1)k sin(2� sin(k=n))an;k

with good relative accuracy for large n. This is very hard, so don't spend too
much time on it.

3. In the example from Section 3 of the Computer Arithmetic chapter, show that the problem
of computing x01 and x

0
2 from xk

1 and x
k
2 is ill conditioned for large k, under the condition

that x01 and x02 are both positive and within a factor of 2 of each other. Identify what
all the terms on the right of (5) are in this case. By contrast, show that computing
y01 and y02 from yk1 and yk2 is well conditioned even for large k. This shows that if you
actually knew yk1 and yk2 to high relative accuracy, you would be able to reconstruct x0

to high relative accuracy. Unfortunately, computing yk to high relative accuracy from
xk (with small relative errors) is impossible.

1One of the purposes of the IEEE 
oating point standard was to allow a program with over
ow or zero

divide to run and print results

2


