
Numerical Methods II, Spring 2018,

Courant Institute, New York University, Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2018/index.html

Section 1
ODE part 1, Runge Kutta methods

January 24, 2018

1 Motivation

This course, Numerical Methods, II, is about numerical methods for solving
differential equations. It is natural to start with the the initial value problem
for ordinary differential equations. This means computing a trajectory x(t) that
is determined by a system of differential equations

d

dt
x = ẋ = f(x)

and initial conditions
x(t0) = x0 .

This chapter introduces time stepping methods for computing (approximate)
trajectories. These methods approximate the trajectory by repeatedly advanc-
ing the solution by small increments of time ∆t. The simplest example is Euler’s
method, which uses the approximation

x(t+ ∆t) ≈ x(t) + ∆t ẋ(t) = x(t) + ∆tf(x(t)) .

This approximation is applied repeatedly to produce an approximate trajectory

x1 = x0 + ∆tf(x0)

x2 = x1 + ∆tf(x1)

etc.

These formulas produce approximations xn ≈ x(tn), where tn = t0 + n∆t. The
Euler method is

xn+1 = xn + ∆tf(xn) . (1)

Two approximations are used to derive it. One is the Taylor approximation

x(tn+1) ≈ x(tn) + ∆t ẋ(tn) = x(tn) + ∆tf(xn) . (2)

But x(tn) is not known, so we use the second approximation

x(tn) ≈ xn . (3)

You come to the Euler method (1) by substituting (3) into the right side of (2).
This is taken to be the definition of the approximation xn+1.

The error is the difference between the computed approximation and the
actual solution to the differential equation.

En = xn − x(tn) .

The error depends on ∆t. If the error goes to zero as ∆t → 0, we say the
method converges.1 If you try a computation with a given ∆t and the error is

1Technically, it is possible to converge, in the sense of mathematical analysis, to the wrong
answer as ∆t→ 0. In numerical analysis, we usually mean convergence to mean convergence
to the right answer.

1

too large, you can run your program with progressively smaller ∆t until you get
the accuracy you need.2 Unfortunately, smaller ∆t means you need more time
steps to get to the same physical time. The total number of time steps is (dre
is “ceiling” of r, which is the smallest integer ≥ r)

NT =

⌈
T − t0

∆t

⌉
.

You double the work when you reduce ∆t by a factor of 2.
In software, the Euler method would be embedded in an ODE solver package.

The developer writes code to implement the generic formula (1). The user
expresses the specific application by writing code to implement the function
f(x). The rest of the data about the problem also must be passed from the user
to the developer code. This includes the dimension of the problem (number
of components of x and f), the initial time, the initial condition x0, and the
desired final time T . Someone has to choose the time step size ∆t, which is not
as simple as it may seem.

The Python code ODE fE Lorenz.py illustrates this structure. It solves the
3D ODE system3

ẋ0 = σ(x1 − x0)
ẋ1 = x0(ρ− x2)− x1

ẋ2 = x0x1 − βx2

σ = 10 , β = 8
3 , ρ = 28 .

 (4)

from time t0 = 0 to time T = 10. The specific ODE system is implemented in
the code

f[0] = sig*(x[1]-x[0]) # evaluate f(x)

f[1] = x[0]*(rho - x[2]) - x[1]

f[2] = x[0]*x[1] - beta*x[2]

The Euler method is implemented in the code:

x = x + dt*f # take a forward Euler time step

t = t + dt # increment time, so x is x(t)

In this example, these two things (evaluate f, take a time step) are done within
the same Python module (file) in the same code block. It is more common, and
better programming practice, to separate the generic code from the problem
specific code into separate modules. In Python, this is done using modules and
sometimes the class mechanism.

2This sentence is naive. For one thing, it’s hard to know how big the error is. For another,
you probably don’t have the computing resources to use a ∆t as small as you want.

3There is a fascinating story behind this Lorenz system. Lorenz created it as a three
equation model of something about the atmosphere (look it up). He was surprised to discover
that roundoff level changes in initial conditions led to completely different trajectories. This
was an important step in the modern appreciation of chaos.

2

Figure 1 plots the computed x2(t) for various values of ∆t. For early times,
the difference between ∆t = 2 · 10−3 and ∆t = 10−3 (a factor of 2) is about
the same as the difference between ∆t = 10−3 and ∆t = 10−4 (a factor of 10).
The curves with ∆t = 10−4 and ∆t = 10−5 are almost indistinguishable (the
∆t = 10−4 curve covers the red ∆t = 10−5 curve, except that a little red is
visible at the right end.). This indicates that the ∆t = 10−4 curve is correct
to “plotting accuracy”, meaning that the difference is less than the thickness of
lines in the plot.

There are better ways to compute a generic ODE trajectory. The Python
code ODE trap Lorenz.py is an implementation of the method:

k1 = f(xn) (5)

k2 = f(xn + 1
2∆t k1) (6)

xn+1 = xn + ∆t k2 (7)

Of course, k1 and k2 are different for each n. It would be more correct to
write kn,1 and kn,2, but it is traditional to leave out the n subscript with the
intermediate values k∗. One time step consists of the two stages (5) and (6). A
stage is an evaluation of f . The new value xn+1 is a function of or the old value

0 2 4 6 8 10
t

0

10

20

30

40

50

z

Lorenz system, Euler solver

dt = 0.002

dt = 0.001

dt = 0.0001

dt = 1e-05

Figure 1: Forward Euler approximations to a the Lorenz system. A visual convergence
study with several values of ∆t. The curves for ∆t = 10−4 and ∆t = 10−5 are almost
indistinguishable on this plot. The Python source is in codes/ODE fE.py.

3

xn, but a more complicated one than the Euler method. The function may be
written explicitly as

xn+1 = xn + ∆tf(xn + 1
2∆tf(xn)) . (8)

A time step of this method is more expensive than for Euler. It uses two f
evaluations instead of one, and it requires storage for the intermediate values
k1 and k2.

Figure 2 shows that, in this example, the two stage method achieves plotting
accuracy (the red ∆t = 10−3 line completely covers the ∆t = 2 · 10−3 line) with
∆t = 2 ·10−3. This time step is 20 times larger than ∆t = 10−4 that was needed
with the Euler method. This means 20 times fewer time steps. Since there are
two f evaluations per time step, that means 10 times fewer f evaluations. The
same accuracy is achieved with about a tenth of the work.

Runge Kutta methods are time stepping methods that compute xn+1 as a
function of xn in some way. The other main class is multistep methods, which
compute xn+1 using more information from the past, say xn and xn−1. We
study them later. Runge Kutta methods are one-step methods.

Runge Kutta methods are derived using direct but laborious Taylor series

0 2 4 6 8 10
t

0

10

20

30

40

50

z

Lorenz system, p/c trap solver

dt = 0.02

dt = 0.002

dt = 0.001

Figure 2: The ODE system of Figure 1 solved by a two stage method. This method
achieves plotting accuracy with ∆t = 2·10−3, which is 20 times larger than was needed
in Figure 1. The Python source is in codes/ODE trap Lorenz.py.

4

calculations. The ODE has the property that x(t + ∆t) is a function of x(t).
We call this function the flow map and write it as Φ(x,∆t):

x(t+ ∆t) = Φ(x(t),∆t) .

The Runge Kutta time step computes xn+1 as a function of xn. We call this
the time step map and write it as Ψ(x,∆t):

xn+1 = Ψ(xn,∆t) . (9)

The methods we have seen are (see (1) and (8)

Ψ(x,∆t) =

{
x+ ∆tf(x) (forward Euler)
xn + ∆tf(xn + 1

2∆tf(xn)) (trapezoid rule) .
(10)

The two stage method has a more complicated Ψ, but is gets the answer with
less work.

The accuracy of a time stepping method is determined by its residual, also
called local truncation error. The residual, for Runge Kutta methods, is the
difference between the time step map and the exact flow map. For technical
reasons, the definition is scaled with a factor of ∆t:

∆tR(x,∆t) = Ψ(x,∆t)− Φ(x,∆t) . (11)

The convergence theorem (proved below) concerns the maximum error up to
some time T :

M(T,∆t) = max
tn≤T

∣∣∣x(n) − x(tn)
∣∣∣ . (12)

Roughly, it says that if R is order ∆tp, then M(T,∆t) also is order ∆tp. We
are interested in ∆t → 0, so larger p means smaller error, or greater accuracy.
The best (largest) p for a given method is its order of accuracy. The forward
Euler method above has p = 1, which makes it first order accurate. The fancier
trapezoid rule (5), (6), (7) has p = 2, which makes it second order. Figures 1
and 2 show the advantage of the fancier method.

2 ODE, the initial value problem

This section consists of a few points about differential equations. Much of it will
be review to many people. Here, xj refers to component j of x ∈ Rd. Elsewhere,
xj may refer to the approximation to x ∈ Rd at time tj .

2.1 The first order system

We often use a dot to denote derivatives with respect to time and a prime or a
gradient symbol for derivatives in space, so

dxj(t)

dt
= ẋj ,

df(x)

dx
= f ′(x) .

5

A system of differential equations is a set of differential equations that governs
the evolution of d variables x1(t), . . . , xd(t). The system is first order if it spec-
ifies only first derivatives of the variables xj . Such a system may be written in
the form

ẋ1(t) = f1(x1(t), . . . , xd(t))

...
...

ẋd(t) = fd(xd(t), . . . , xd(t)) .

Usually, a system must be solved simultaneously. It is impossible to compute
one of the components, say x1(t), without computing all of them. The system
is generally written in vector form

ẋ(t) = f(x(t)) . (13)

Here, x(t) is the column vector with components x1, . . . , xd and f(x) is the
column vector whose components are fj .

We might call (13) a generic first order system. Many dynamical systems
have to be re-written to be put in this form (example below). Many dynamical
systems have special structure that can be used to make the solution process
faster or more accurate. Still, the generic system is useful because it exposes in
a simple way things that are common to many dynamical systems, things that
might be harder to spot in specific examples with special structure. Methods
developed for generic problems are applicable to any problem that can be for-
mulated in that way. Generic methods (generic mathematical analysis, generic
software) may not be optimal for a problem with special structure, but they are
available. The user can use a generic ODE software package and communicate
her/his specific problem by writing a module that evaluates f .

Here is one example of formulating a dynamical system in the generic format
(13). Newton’s law F = ma (force = mass times acceleration) leads to second
order equation systems that may be written as

mr̈ = F (r) . (14)

In a simple case, r = (rx, ry, rz) ∈ R3 could represent the cartesian coordi-
nates of an object in three dimensional physical space. The force also has three
components F = (Fx(r), Fy(r), Fz(r)). Physicists and engineers often use bold
font, r, or decoration, ~r, to distinguish vectors from plain numbers or compo-
nents. You can formulate the second order system (14) as a first order system
by introducing the first time derivatives as new variables:

x1(t) = rx(t)

x2(t) = ry(t)

x3(t) = rz(t)

x4(t) = ṙx(t)

x5(t) = ṙy(t)

x6(t) = ṙz(t) .

6

Some of the first order differential equations come directly from this definition,
as ẋ1 = ṙx = x4. The others come from the original dynamics, as ẋ4 = r̈x =
Fx(r). The differential equation system can be written as

ẋ1 = f1(x) = x4

ẋ2 = f2(x) = x5

ẋ3 = f3(x) = x6

ẋ4 = f4(x) = Fx(x1, x2, x3)

ẋ5 = f5(x) = Fy(x1, x2, x3)

ẋ6 = f6(x) = Fz(x1, x2, x3) .

A more typical example would have several particles with locations r1, . . . , rN .
Here, each rj is a point in three dimensional space, so R = (r1, . . . , rN) has 3N
coordinates in all. The force on particle j depends on the locations of all the
other particles, so

mj r̈j = Fj(R) .

In generic form, this becomes a system of 6N first order equations for the
positions and velocities of the particles.

The Python modules (files) in ODE solver illustrate several points made
here. This code simulates the motion of N particles moving in one dimension,
which leads to a system of 2N first order differential equations. The specific
system is the Fermi Pasta Ulam lattice.4 There are three modules, a “main
program”, a “package” module, and a “user” module. The main program,
lattice.py sets parameter values, manages the computation and makes the
movie. The package module EulerForward.py implements one time step of
the forward Euler method (1). This calls the user module lattice force.py,
which knows the specific problem. Figure 3 is a screen capture that shows a
frame of the output movies from runs with a larger and smaller time step. The
large time step calculation is much faster, and very inaccurate.

The initial value problem is to find x(t) for t ≥ t0, subject to the initial
condition

x(t0) = x0 . (15)

The existence and uniqueness theorem for ODE guarantees that if f is locally
Lipschitz5, then there is a t1 > 0 so that there is a unique trajectory (solution) of
(13) and (15) defined for t in the range t0 ≤ t < t0 +t1. The example f(x) = x2,

4Fermi Pasta and Ulam used this dynamical system in one of the earliest “automatic
electronic computer” experiments. The results contradicted their expectations and some
fundamental beliefs regarding statistical physics. The belief was that a generic nonlinear
hamiltonian system would show “molecular chaos” and evolve quickly toward thermodynic
equilibrium (of the microcannonical ensemble). Instead, the system exhibits recurrence – re-
turning on a relatively short time scale to configurations similar to the starting configuration.
This behavior still contradicts dogma and still is unexplained. Attempts to explain it led to
discovery of nonlinear lattice systems that are integrable – the Toda lattice. The the Fermi
Pasta Ulam lattice does not seem to be integrable.

5This means that for every x ∈ Rn there is a δx > 0 and an Lx so that if |x− y| ≤ δx and
|x− z| ≤ δx, then |f(y)− f(z)| ≤ Lx |y − z|. If f is continuously differentiable (the derivative

7

with x(0) = 1 and x(t) = (1−t)−1 shows that the trajectory may not be defined
for all t > t0.

If f(x) is differentiable for every x and6 f ′ is continuous, then f is locally
Lipschitz. If |f ′(x)| → ∞ as x → ∞, then f is not globally Lipschitz7. For
example, the Lorenz system of Section 1 is not globally Lipschitz. A linear
system of equations, which means that f(x) = Ax for some matrix A, is globally
Lipschitz.

If f is not globally Lipschitz, then the solution can blow up at some time
T > t0. This means that the trajectory is defined for all t between the initial
time t0 and T , but that |x(t)| → ∞ as t → T . Many interesting and useful
ODE systems have solutions that blow up. If they do, that tells us something
interesting about the physical system they model. The physical system itself
may not literally blow up, but the model says that something dramatic happens
as t approaches T . The model probably stops being valid there. Nevertheless,
the physical system may do something dramatic. We will always assume that f
is locally Lipschitz.

exists for every x and the derivative is a continuous function of x), then f is locally Lipschitz.
The function f(x) = x2 sin(x−4) is differentiable at every point (the derivative at zero is zero),
but the derivative is not a continuous function of x and f is not locally Lipschitz (there is no
δ0 > 0 and L0). If your ODE is ẋ = x2 sin(x−4), then much of the theory in this chapter does
not apply.

6We often write f ′(x) for the Jacobian matrix of first partial derivatives of f .
7This means that there is a single L so that |f(x)− f(y)| ≤ L |x− y| for all x and y.

Figure 3: Simulation of a Fermi Pasta Ulam lattice using the code in ODE solver.
A screencap of the output movies for ∆t = .002 (left) and ∆t = .001 (right). They
represent the computed solution at time approximately t = 3012. The ∆t = .002
calculation took about 276 seconds on some laptop. The ∆t = .001 calculation took
about 493 seconds, which is something like twice as much time. It is clear from the
pictures that the ∆t = .002 calculation is fairly wrong.

8

2.2 The flow map and short time behavior

The solution x(t0 + t) is a function of x0 and t. We call it the flow map if we’re
thinking of it as a function of x0 with t fixed. We call it the trajectory if we’re
thinking of it as a function of t with x0 fixed. The existence and uniqueness
theorem for differential equations may be viewed as saying that for any x there
is a t1 > 0 and an r > 0 so that the flow map is defined for any t < t1 and
|x0 − x| < r. We can write the same thing as

x(t0 + t) = Φ(x(t0), t) . (16)

The formula y = Φ(x, t) means that if the trajectory is at x at some time,
then after a time t it is at y. For example, if d = 1 and f(x) = 2x, then
Φ(x, t) = e2tx. The differential equation ẋ = f(x) implies that the flow map
satisfies the differential equation

∂

∂t
= ∂tΦ(x, t) = f(Φ(x, t)) . (17)

The flow map is defined for each x at least for sufficiently small t. But, for
nonlinear differential equations it need not be defined for all t for a specific x.
For example, consider the equation

ẋ = x2 .

This differential equation has f(x) = x2, which is locally Lipschitz but not
globally Lipschitz (no L works for all y and z.) The solution to the initial value
problem with x(0) = x0 is

x(t) =
1

x−1
0 − t

.

This blows up (goes to infinity) as t→ t∗ = x−1
0 , if x0 > 0.

Runge Kutta methods are constructed using Taylor series expansion of Φ(x, t)
as a function of t near t = 0. This is the Taylor series expansion of x(t0 +t), as a
function of t, about t = 0. For convenience, we take t0 = 0 in these derivations.
The Taylor series is

x(t) = x(0) + tẋ(0) +
1

2
t2ẍ(0) +

1

6
t3
d3

dt3
x(0) + · · · .

It is easier to write expressions like these if we leave out the argument 0 on the
right side. For example,

x(t) = x+ tẋ+
1

2
t2ẍ+

1

6
t3
d3

dt3
x+ · · · .

Here, and often in this course, we make the convention that if the argument is
left out is it assumed to be zero.

The Taylor coefficients ẋ (meaning ẋ(0)), ẍ, etc., are found from the differ-
ential equation. The first such formula is just

ẋ = f(x) . (18)

9

We find the second formula by differentiating the ODE formula with respect to
t. In these calculations, we write in t when it is not zero.

ẍ(t) =
d

dt
ẋ(t)

=
d

dt
f(x(t))

= f ′(x(t)) ẋ(t) (19)

ẍ(t) = f ′(x(t)) f(x(t)) . (20)

The main point of that calculation is the chain rule. It is convenient to write it
in terms of components in the form

d

dt
fj(x(t)) =

d∑
k=1

∂fj(x(t))

∂xk

dxk(t)

dt
. (21)

You can recognize this as the right side of (19), since f ′ is the Jacobian matrix
of partial derivatives. Setting t = 0 in (20), we get

ẍ = f ′(x)f(x) . (22)

This formula suffices to derive the two stage second order method of Section 1.
Methods of order higher than 2 require derivatives beyond ẍ. These are

more complicated and are not easily expressed in simple matrix/vector notation.
Therefore the calculations are presented with components and sums. The third
derivative is found by differentiating the second derivative formula. We use the
chain rule (as before), and the product rule:

d3

dt3
xj(t) =

d

dt
ẍj(t)

=
d

dt

d∑
k=1

(
∂fj(x(t))

∂xk
fk(x(t))

)

=

d∑
k=1

(
d∑
l=1

∂2fj(x(t))

∂xk∂xl

dxl(t)

dt
fk(x(t)) +

∂fj(x(t))

∂xk

∂fk(x(t))

∂xl

dxl(t)

dt

)

=

d∑
k=1

(
d∑
l=1

∂2fj(x(t))

∂xk∂xl
fk(x(t))fl(x(t)) +

∂fj(x(t))

∂xk

∂fk(x(t))

∂xl
fl(x(t))

)
Some simplifications of notation make this formula easier to understand.

The first simplification is to set t = 0 and leave out the t argument:

d3

dt3
xj =

d∑
k=1

(
d∑
l=1

∂2fj(x)

∂xk∂xl
fk(x)fl(x) +

∂fj(x)

∂xk

∂fk(x)

∂xl
fl(x)

)
.

The second simplification is to write partial derivatives as subscripts, after a
comma. For example,

∂fj(x)

∂xk
= fj,k ,

∂2fj(x)

∂xk∂xl
= fj,kl , etc.

10

With this, we have

d3

dt3
xj =

d∑
k=1

(
d∑
l=1

fj,kl(x)fk(x)fl(x) + fj,k(x)∂fk,l(x)fl(x)

)
.

The third simplification is the Einstein summation convention, we leave out the
sum symbols. The convention is that whenever you see a repeated index, you
sum over that index running from 1 to d. You do this for an index that really is
an index (such as k in fk) or an index that represents a partial derivative (such
as k in fj,kl). There can be more than one summation in one formula Some
examples are

d∑
k=1

fj,kfk = fj,kfk

d∑
k=1

d∑
l=1

fj,klfkfl = fj,klfkfl

These simplifications give the more compact formula

d3

dt3
xj = fj,kl(x)fk(x)fl(x) + fj,k(x)fk,l(x)fl(x) . (23)

This suffices to make a third order accurate three stage method.
A fourth order method requires the fourth derivative. The third derivative

calculation may be written simply as:

fj,kfk
d
dt−→ fj,klfkfl + fj,kfk,lfl .

You differentiate using the product rule and chain rule, then you replace ẋl with
fl. In this spirit, we calculate some of the terms in the fourth derivative:

fj,klfkfl
d
dt−→ fj,klmfkflfm + fj,klfk,mflfm + fj,klfkfl,mfm

= fj,klmfkflfm + 2fj,klfk,mflfm .

You can see that the second and third terms are equal using the substitution
k ↔ l. But you also see that these calculations are complicated, with many
terms involving various combinations of derivatives. There is a reason most
people don’t read the derivations of Runge Kutta methods.

Altogether, these calculations may be written in the form

xj(t) = xj

+ tfj(x)

+
1

2
t2fj,k(x)fk(x)

+
1

6
t3 (fj,kl(x)fk(x)fl(x) + fj,k(x)fk,l(x)fl(x))

+ O(t4) .

11

We will derive Runge Kutta methods using the same calculation written in
terms of the flow map:

Φj(x, t) = xj (24)

+ tfj(x) (25)

+
1

2
t2fj,k(x)fk(x) (26)

+
1

6
t3 (fj,kl(x)fk(x)fl(x) + fj,k(x)fk,l(x)fl(x)) (27)

+ O(t4) . (28)

The matrix vector notation for fj,kfk is f ′f . One matrix vector notation for
fj,kl(x)fk(x)fl(x) is f ′′[f, f]. In this notation, the expansion of Φ may be written

Φ(x, t) = x+ tf(x) + 1
2 t

2f ′(x)f(x)

+ 1
6 t

3
[
f ′′(x)[f(x), f(x)] + (f ′(x))

2
f(x)

]
+O(t4) .

2.3 Linear systems

This subsection reviews some of the properties of linear systems of differential
equations. A linear system of ODE has the form

ẋ = Ax . (29)

Here, A is a d×d matrix. Much of the behavior of solutions may be understood
in terms of eigenvalues and eigenvectors of A. A number λj is an eigenvalue
with right eigenvector rj if

Arj = λjrj . (30)

The eigenvalue may be complex even when A is real. The eigenvector is com-
plex if the eigenvalue is complex. The row vector lj is the corresponding left
eigenvector if

ljA = λj lj . (31)

If rk and lk correspond to λk 6= λj , then

lkrj = 0 .

A matrix is diagonalizable if there is a basis of d linearly independent right
eigenvectors. These may be arranged a matrix of right eigenvectors

R =

 | | · · · |
r1 r2 · · · rd
| | · · · |

 .

12

In this case, there exist linearly independent left eigenvectors that may be ar-
ranged into a left eigenvector matrix

L =


− l1 −
− l2 −

...
− ld −

 . (32)

These may be chosen so that
LR = I . (33)

This matrix equation is equivalent to the bi-orthogonality conditions

lkrj =

{
1 if j = k
0 if j 6= k.

If A is symmetric, then the eigenvalues are real, A is diagonalizable, and we
may take

L = Rt .

In is the same as saying that the transpose of a right eigenvector is a left
eigenvector (which is obvious if A is symmetric) and that the right eigenvectors
may be chosen to be ortho-normal

rtkrj =

{
1 if j = k
0 if j 6= k.

If A is diagonalizable, we create a diagonal eigenvalue matrix

Λ = diag(λ1, · · · , λd) .

The eigenvalue, eigenvector relations (30) may be written in the matrix form

AR = RΛ . (34)

If we have R and Λ that satisfy the matrix eigenvalue eigenvector relation (34),
we may define a new matrix L = R−1 and multiply (34) on both sides by L.
The result is

LA = ΛL .

This is the matrix version of the left eigenvalue eigenvector relations (31). The
relations also may be written in the form

A = RΛL (or Λ = LAR) , LR = I . (35)

The eigenvector basis transforms the coupled system (29) into a collection
of uncoupled scalar differential equations. You can see this by multiplying both
sides of (29) by L, using the relation RL = I, and defining

u = Lx . (36)

13

The calculation is:

ẋ = Ax

Lẋ = LA (RL)x

d

dt
(Lx) = (LAR) (Lx)

d

dt
u = Λu .

This is equivalent to the d independent differential equations

u̇j = λjuj .

The solution is
uj(t) = eλjtuj(0) .

The eigenvector matrix R represents x in terms of u (since R = L−1):

x = Ru .

This gives the eigenvalue eigenvector representation of the solution

x(t) =

d∑
j=1

eλjtuj(0) rj . (37)

This formula may be given in matrix form as

etA = RetΛL . (38)

Here, etA is the matrix exponential, or fundamental solution, that satisfies

x(t) = etAx(0) .

Also, etΛ is the matrix exponential of the diagonal matrix, which is also diagonal
with etλj on the diagonal. You can check that

x(t) = RetΛLx(0)

is the same as both (37) and (38).
The definition of L (32) and the definition of u (36) imply that the compo-

nents of u are
uj = ljx .

These uj are the “expansion coefficients” when x is written in terms of the right
eigenvector basis

x =

d∑
j=1

ujrj .

14

This is the components version of the matrix equation

x = RLx = Ru .

If A is symmetric, then lj = rtj .
The spectrum of A is the set of eigenvalues of A. The spectrum tells you a lot

about trajectories x(t). Write an eigenvalue in terms of its real and imaginary
parts as

λj = µj + iωj . (39)

The real part of λj determines how trajectories grow:∣∣eλjt
∣∣ = eµjt .

These grow “exponentially” if µj > 0, so λj is in the right half of the complex
plane, and decay if µj < 0 (left half plane). If µj = 0, so λj is on the imaginary
axis, then the solution neither grows nor decays. It oscillates if ωj 6= 0 and does
nothing if ωj = 0 (so λj = 0). The spectral abscissa is

µ(A) = max
j
µj .

A generic trajectory grows or decays at the rate µ(A), which means

|x(t)| = Cetµ(A) + smaller as t→∞ .

This can fail to happen, for example, if the expansion coefficients of initial
conditions vanish. This is unlikely in exact arithmetic and even more unlikely
in computer arithmetic.

This simple story does not cover all the cases you will encounter in numerical
solution of differential equations. For one thing, there are matrices that cannot
be diagonalized. We say these have nontrivial Jordan structure. For example,
consider a one dimensional harmonic oscillator with real frequency ω:

r̈ = −ω2r .

This is written as a first order system using x1 = r, x2 = ṙ. The dynamical
equations are ẋ1 = ṙ = x2, and ẋ2 = r̈ = −ω2r = −ω2x1. Therefore

d

dt

(
x1

x2

)
=

(
0 1
−ω2 0

)(
x1

x2

)
.

The matrix

A =

(
0 1
−ω2 0

)
has eigenvalues λ1 = iω, and λ2 = −iω. If ω 6= 0 these are distinct so A may
be diagonalized. The eigenvalues are on the imaginary axis and the solution
formula (37) implies that x(t) remains bounded as t→∞.

If ω = 0 then A is a Jordan block of size 2 with eigenvalue 0. There is no
representation of the solution in the form (37). In fact, a typical solution grows

15

linearly as t → ∞. This is obvious from the physical problem – if ω = 0, we
have an oscillator with no spring (no restoring force). The dynamics are r̈ = 0,
which gives r(t) = r(0) + tṙ(0). The particle moves with a constant velocity.

Stability is a constant issue in numerical solution of differential equations.
A simple stability question would be whether

∥∥etA∥∥ is bounded as t → ∞. A
matrix like this would be called stable. This is true if µ(A) < 0 and false if
µ(A) > 0 (the spectral abscissa). But if µ(A) = 0, it depends on whether A has
nontrivial Jordan structure corresponding to pure imaginary eigenvalues. If the
eigenvalues on the imaginary axis are simple, as they are when ω 6= 0 above,
then A is stable. The theorem is that A is stable if all its eigenvalues are in the
left half plane or the imaginary axis, and if the eigenvalues on the imaginary
axis are simple.

The stability issue arises also for discrete time dynamics

xn+1 = Axn , xn = Anx0 .

The matrix A is stable for discrete time dynamics if all the eigenvalues of A are
inside the unit disk and the ones on the unit circle (the boundary of the unit
disk, the borderline eigenvalues) are simple. If A has a rank 2 Jordan structure
for an eigenvalue on the unit circle, then (generically) the iterates grow linearly
in time. For rank p Jordan blocks, the growth is on the order of np−1.

2.4 Perturbation, linearization, sensitivity

Sensitivity is the question: how does the output change if you change the input a
little. It is important physically for many reasons. It is important in numerical
solution of differential equations because it determines the condition number of
the ODE problem. A principle that applies to solving differential equations is
that a problem that ill conditioning limits the accuracy you should expect to
get.

For the initial value problem, we ask how x(t) changes if we change x(t0) a
little. This could be written that some people (including myself) find confusing:

∂xi(t)

∂xj(t0)
.

Instead, we write this as the derivative (Jacobian) matrix of the flow map

Φ′ij(x, t) =
∂Φi(x, t)

∂xj
= ∂xjΦi(x, t) .

We wrote Φ′ij as Φi,j just above, but matrix indices are usually written without
the comma. Mathematical notation never stays consistent. The d× d Jacobian
matrix Φ′(x, t) describes the sensitivity of the solution at time t to perturbations
in the initial condition.

The sensitivity matrix Φ′ may be computed by solving a system of differential
equations. These equations are derived by using the fact that partial derivatives

16

commute. We differentiate the differential equation (17) with respect to xj , and
the result is (using the chain rule to differentiate fj(Φ(x, t)) as above)

∂t∂xjΦi(x, t) = ∂xj∂tΦi(x, t)

= ∂xjfi(Φ(x, t))

= ∂xk
fi(Φ(x, t))∂xjΦk(x, t) .

In index notation with the Einstein convention, this is written

∂tΦi,j(x, t) = fi,k(Φ(x, t))Φk,i(x, t) .

We concentrate on the sensitivity of a specific trajectory x(t). We drop the x
dependence and write

M(t) = Φ′(x(0), t) .

The dynamics of M are

∂tM(t) = f ′(x(t))M(t) . (40)

This is the x dynamics (13) linearized about the trajectory x(t). You can
compute the trajectory and its sensitivity by solving the ODE system that
combines (13) and (40). The initial condition for M is M(0) = I, which is the
Jacobian of Φ(x, 0) = x.

Many systems show extreme sensitivity to perturbations in the initial con-
ditions. This is possible even when the trajectories themselves are bounded.
Even then it is possible that typical bounded trajectories have

‖M(t)‖ ∼ eµt

as t → ∞, with µ > 0. This µ is the principal Lyapunov exponent. When
µ is positive, then the system has “exponential” sensitivity to changes in the
initial condition. Systems like that (bounded trajectories, positive Lyapunov
exponent) are called chaotic. The Lorenz system (4) is an example.

A chaotic system is ill conditioned and therefore hard or impossible to solve
accurately. The condition number is a dimensionless measure of sensitivity

κ =

∥∥∥∥∂ answer

∂ data

∥∥∥∥ · ‖data‖
‖answer‖

Here, the data is x, the answer is x(t) = Φ(x, t), and the sensitivity is M(t).
Therefore,

κ(t) = ‖M(t)‖ ‖x‖
‖Φ(x, t)‖

.

A chaotic system has ‖M(t)‖ ∼ eµt while the fraction ‖x‖ / ‖Φ(x, t)‖ does not
go to zero as t→∞. Therefore

κ(t) ∼ eµt , as t→∞.

17

The Liapunov time (a term used by physicists) is

TL =
1

µ
.

It represents the time needed for perturbations to grow roughly by a factor of
e. After about 60 Lyapunov times, perturbations grow by a factor of about
e60 ≈ 1026. This means that a perturbation in the initial data of size 10−26 is
amplified to become a perturbation of order 1 at time t = 60TL. From a practical
point of view, this means that the solution at time 60TL cannot be computed
“accurately” in the sense that it is not possible to predict the numbers x(t)
accurately. For one thing, initial condition x(0) is perturbed by a larger 10−17

when it is rounded to double precision floating point. But even with extended
precision arithmetic, it is unlikely that an initial value would be known with 26
digits of accuracy.

Numerical computing can be useful even beyond the 60TL limit. Although
x(t) cannot be calculated, there may be a quantity of interest, or QOI, that can

0 5 10 15 20 25 30
t

0

10

20

30

40

50

z

Lorenz system, p/c trap solver

dt = 1.0e-03

dt = 1.0e-04

dt = 1.0e-05

Figure 4: The Lorenz system (4) solved using the same trapezoid rule but for a longer
time and with much smaller time steps. Chaos starts to set in around T = 17. By
time T = 30, even the smallest ∆t solution is inaccurate. The Python source is in
codes/LorenzChaos.py.

18

be. An example may be the average value of some “observable” q(x):

Q =
1

T

∫ T

0

q(x(t)) dt .

In climate science, computing x(t) would be “predicting the weather”. But
averages like Q are “climate” – average rainfall per year, etc. It may be possible
to predict climate without being able to predict the weather. An example (not
weather and climate, unfortunately) is in the exercises.

The weather and climate problem exists in almost any scientific computa-
tion. The theory may predict that your QOI is given correctly in the limit
∆t→ 0, but that limit may be inaccessible with your computing hardware and
algorithms. Practical people often attempt a convergence study, which means
comparing the results from several runs with different ∆t (or other computa-
tional parameters in more complex computations). It can be distressing that
x(t) is not converging (yet). Nevertheless, some QOI may seem to be “con-
verged” (computed as accurately as needed). This is a very important aspect of
scientific computing, and one that is often under-estimated or even neglected by
people in a hurry. Such people often have the wrong answer without knowing
it.

3 Time stepping and Forward Euler

Time stepping means computing a trajectory (an approximation of a trajectory)
through a sequence of small time steps. A time step advances the solution from
time tn to time tn+1 = tn + ∆t. The approximate solution is

xn ' x(tn) .

Runge Kutta methods are methods in which xn+1 depends on xn alone. Multi-
step methods compute xn+1 using xn and earlier values xn−1, etc. The time
step is some formula or algorithm that takes xn and ∆t and produces xn+1.
This will be denoted by Ψ, so

xn+1 = Ψ(xn,∆t) .

Different methods have different functions Ψ. The time step Ψ is supposed to
mimic the actual flow map Φ defined in Subsection 2.2.

The forward Euler method is

xn+1 = xn + ∆tf(xn) . (41)

This has the time step function

Ψ(x,∆t) = x+ ∆tf(x) .

Figure 1 has a plot of approximate solutions to a simple ODE system computed
by forward Euler for a decreasing sequence of ∆t values. The approximations

19

(seem to) converge as ∆t→ 0. There is a lot of theory that explains and predicts
the size of the error and how it grows with t. It will enable us to find methods
that are far better than forward Euler.

Here is a version of this convergence theory, as applied to the forward Euler
method. The theory is a relation between residual (or local residual) and er-
ror (or global error). Throughout numerical computing, resudual refers to the
amount by which some equations defining the answer are not satisfied, while
error refers to the difference between the computed answer and the actual an-
swer. A method is stable if there is a bound for error in terms of residual. The
point of this approach is that residual is not so hard to estimate or measure.
Measuring the error directly would require knowing the answer. But the point
of computing is to find unknown answers.

The theory starts with terminology and notation. The error at time tk is

En = xn − x(tn) .

The maximum error up to time t is

M(t,∆t) = max
tk≤t
|xk − x(tk)| . (42)

A method is convergent if M(t,∆t) → 0 as ∆t → 0. The definition (42) refers
to a physical time t rather than a number of time steps n. As ∆t → 0, the
number of time steps needed to reach a given physical time goes to infinity. It
is unlikely that M(t,∆t) → 0 uniformly as t → ∞. If the problem is chaotic,
we expect something like M ∼ ∆tpeµt. If you set M = 1 and solve for t (to find
the time at which the method has lost all accuracy), you find

t =
p

µ
log(∆t−1) .

A smaller ∆t gets you further, but not by much.
A method has order of accuracy p, or is pth order accurate, if

M(t,∆t) ≤ C(t)∆tp .

Normally, saying a method has order of accuracy p implies that it does not have
order q for any q > p. The forward Euler method (41) is is convergent and first
order accurate. Fancier methods described below have p > 1, they are higher
order.

A technical point: we use absolute value signs in (42) and elsewhere to

20

represent any norm in the space Rn. For example,

|x| =
d∑
j=1

|xj |

or

|x| =

 d∑
j=1

x2
j

1/2

or

|x| = max |xj |
etc.

The constants in the theorems may depend on which norm we use, but the the-
orems and the existence of constants does not. It is a theorem of mathematical
analysis that in d dimensions, any two norms are related by a constant (tech-
nically, are equivalent). The theorems are simpler to state and easier to prove
and more general if you allow |·| to represent any norm.

The local truncation error, or residual, or one step error, of a one-step
method is error produced in a single time step. It simplifies the calculations
later to include a factor of ∆t in the definition, so

R(x,∆t) = ∆t−1 [Ψ(x,∆t)− Φ(x,∆t)] .

This definition allows the difference between Ψ and Φ to be written in terms of
the local truncation error as

Ψ(x,∆t) = Φ(x,∆t) + ∆tR(x,∆t) . (43)

It allows us to express the action of the time step method in terms of the exact
solution to the differential equation

xn+1 = Ψ(xn,∆t) = Φ(xn,∆t) + ∆tR(xn,∆t) .

The local truncation error, R, can be thought of as an extra “force” that the time
stepping method adds to the differential equation. In this view, the difference
between x(tn) and xn is something like the difference between the exact solution
x and the solution to the modified differential equation

ẏ = f(y) +R(t) . (44)

Indeed, the forward Euler approximation to the modified equation (44) is

yn+1 = yn + ∆t [f(yn) +R(tn)] .

The definition (43), with the ∆t pulled out, makes this interpretation possible.
Here is the main convergence theorem for Runge Kutta methods. Several

assumptions are necessary, and these should seem natural by now.

21

1. To prove that the method converges up to time t, the true solution must
be defined (not blown up) up to that time. We assume that x(t) exists
and satisfies the differential equation for all t in the range 0 ≤ t ≤ T .

2. The residual defined by (43) must be small for any y that is close to the
exact trajectory for t ≤ T . We assume that there is an r > 0 and an a so
that if |y − x(t)| ≤ r for some t ≤ T then

|R(y,∆t)| ≤ a∆tp .

3. The method is built from ∆t and f in some natural way, specifically that
Ψ(x,∆t) = x + ∆t · (something involving f). We assume that that there
is a b so that if |y − x(t)| ≤ r and |z − x(t)| ≤ r for some t ≤ T , then

|Ψ(y,∆t)−Ψ(z,∆t)| ≤ |y − z|+ b∆t |y − z| .

The forward Euler method (and all the other methods considered here)
satisfy this if f is Lipschitz continuous.

Theorem. If hypotheses 1-3 are satisfied and t ≤ T , then there is an ε > 0 so
that if ∆t ≤ ε, then

M(t,∆t) ≤ a∆tp

b

(
etb − 1

)
. (45)

Remarks:

1. The error is allowed to grow exponentially in t, as we expect and as hap-
pened in the Lorenz system computation.

2. The right side is the solution to the model error propagation problem

ṁ = bm+ a∆tp , m(0) = 0 .

The parameter b is related to the Lipschitz constant of f , which is the
exponential growth rate of exact solutions.

3. The role of ε is that if ∆t ≤ ε and the conclusion (45) holds, then
|xn − x(tn)| ≤ r so the bounds apply.

Proof. The proof is by induction on the time step n. The induction hypothesis
is that

|xn − x(tn)| ≤ a∆tp

b

(
ebtn − 1

)
.

We must prove this for n+ 1. The main calculation is

xn+1 − x(tn+1) = Ψ(xn,∆t)− Φ(x(tn),∆t)

= [Ψ(xn,∆t)−Ψ(x(tn),∆t)] + [Ψ(x(tn),∆t)− Φ(x(tn),∆t)] .

The first term is controlled by the stability hypothesis 3. Specifically

|Ψ(xn,∆t)−Ψ(x(tn),∆t)| ≤ |xn − x(tn)|+ b∆t |xn − x(tn)|
≤ (1 + b∆t)M(tn,∆t) .

22

The second term is controlled by the consistency hypothesis 2. Specifically, in
view of (43)

|Ψ(x(tn),∆t)− Φ(x(tn),∆t)| ≤ ∆t a∆tp .

The error amplification bound follows from combining these estimates:

M(tn+1,∆t) ≤ (1 + b∆t)M(tn,∆t) + ∆t a∆tp . (46)

It is an exercise (literally, exercise 2) to prove the error bound (45) from this.

4 Higher order methods

To review, a one-step method takes a sequence of time steps xn+1 = Ψ(xn),∆t).
The accuracy of the method is determined by the local truncation error (43).
This section describes some explicit, multi-stage methods that have a higher
order of accuracy. We do not yet give a systematic theory of higher order
Runge Kutta methods.

We start with second order two-stage methods. Some of these may be un-
derstood as trapezoid rule or midpoint rule approximations to an integral, or as
centered difference approximations to derivatives. For example, here is a second
order centered approximate derivative:

ẋ(t+ 1
2∆t) =

x(t+ ∆t)− x(t)

∆t
+O(∆t2) .

Solving for the value at t+ ∆t, we have

x(t+ ∆t) = x(t) + ∆tf(x(t+ 1
2∆t)) +O(∆t3) . (47)

This formula is like the forward Euler approximation, except that f(x(t)) is
replaced by the unknown f(x(t + 1

2∆t)). This would have order of accuracy
p = 2, if it could be implemented.

There is a two stage predictor corrector version of this that is explicit and
preserves the second order accuracy. For first step is to predict x(t+ 1

2∆t) using
forward Euler. We call the predicted change y1:

y1 = 1
2∆tf(x(t)) .

This value is then used on the right side of (47):

y2 = ∆tf(x(t) + y1) .

The eventual time step is
xn+1 = xn + y2 .

It is traditional to work with k1 instead of y1, with y1 = ∆tk1. The time step
map Ψ(x,∆t) for this method is

k1 = f(x) (48)

y2 = ∆tf(x+ 1
2∆tk1) (49)

Ψ(x) = x+ ∆tk2 . (50)

23

The first stage (48) uses f to evaluate k1. The second stage (49) uses f to
evaluate k2. The final assembly (49) constructs the new x value as xR plus linear
combination of k1 and k2. This is the method used in the Lorenz calculations
of Figures 2 and 4.

The general two stage explicit Runge Kutta method is

k1 = f(x) (51)

k2 = f(x+ ∆t a12k1) (52)

Ψ(x) = x+ ∆t (b1k1 + b2k2) . (53)

The general three stage method is

k1 = f(x) (54)

k2 = f(x+ ∆t a12k1) (55)

k3 = f(x+ ∆t (a21k1 + a22k2)) (56)

Ψ(x) = x+ ∆t (b1k1 + b2k2 + b3k3) . (57)

It is possible to define r stage explicit methods in this way. The coefficients ajk
and bk define the specific method. There are often displayed on the page in a
specific way called the Butcher tableau.

We find the order of accuracy of a Runge Kutta method by calculating the
Taylor series expansion of Ψ and comparing it to the expansion of the flow map
Φ. The calculation for the two stage method is not complicated. We expand
the second stage formula (52) and substitute the first stage formula (51) to get

k2 = f(x) + ∆tf ′(x)a12k1 +O(∆t2)

= f(x) + ∆ta12f
′(x)f(x) +O(∆t2) .

At this point we drop the x arguments in these calculations. The assembly
formula (53), is

Ψ(x,∆t) = x+ ∆t (b1k1 + b2k2)

= x+ ∆t (b1f + b2 (f + ∆ta12f
′f)) +O(∆t3)

= x+ ∆t (b1 + b2) f + ∆t2b2a12f
′f +O(∆t3) .

We compare this with the short time expansion of the flow map Φ. From the
∆t term (25) we see that the method is at least first order accurate if the O(∆t)
terms agree, which is

1 = b1 + b2 . (58)

Comparing the ∆t2 terms in (26), we see that the method is at least second
order accurate if

1

2
= b2a12 . (59)

It turns out (we will see) that it is not possible to match the ∆t3 terms and
get a third order method. The method is second order accurate if the three

24

parameters b1, b2, and a12 are chosen to satisfy the two equations (58) and (59).
This is two equations for three unknowns, so there should be a one parameter
family of solutions. This is the family of second order two stage explicit Runge
Kutta methods. One solution is b2 = 1, a12 = 1

2 and b1 = 0. This is the
predictor-corrector midpoint rule we used before. Another is b1 = b2 = 1

2 and
a12 = 1.

5 Error analysis and software validation

A code that has not been validated is wrong. Every software effort must include
plans for validation. Richardson estimation is the basis of a common validation
method, particularly for algorithms with high order accuracy. Richardson es-
timation is based on asymptotic error expansions, which are common in basic
methods for differentiation and integration.

Suppose h is a step size parameter that is going to zero. Suppose the algo-
rithm is estimating a quantity (the “answer”) A0 using the estimate A(h). An
asymptotic error expansion is a relation of the form

A(h) = A0 + hpA1 + hqA2 + · · ·+O(hr) . (60)

Here, p is the order of accuracy of the method and p < q < · · · < r. The one
sided difference approximation

ẋ(t) ≈ x(t+ ∆t)− x(t)

∆t

has p = 1 (it’s first order accurate) and q = 2 (a Taylor series calculation
shows this). Here, we replaced the generic step size parameter with the specific
parameter ∆t for this problem. The centered difference approximation

ẋ(t) ≈ x(t+ ∆t)− x(t−∆t)

2∆t

has p = 2 (it’s second order accurate) and q = 4.
Suppose you want to validate a code that computes A(h) and is supposed to

have an asymptotic error expansion. One approach is to apply it to a problem
where A0 is known, a test problem. For this to be possible, the code must
be written in a flexible modular way so that it is easy to apply it to different
problems. You compute A(h) and A(2h) by doing two runs. You then solve for
p as follows. The 2h result satisfies

A(2h) = A0 + 2phpA1 + 2qhqA2 + · · ·+O(hr) .

Combine this with A(h) and use (60), and you get

A(2h)−A0

A(h)−A0
= 2p +O(hq−p) . (61)

25

Simply put, if there is an asymptotic error expansion for a method of order p,
then doubling the step size increases the error roughly by a factor of 2p. To do
a convergence study, you print the ratio (61) for a decreasing set of h values and
check that the result converges to 2p. That means 2 for a first order method, 4
for second order, 8 for third order, etc. This is particularly useful for checking
high order methods that only are high order if you use the correct coefficients.
The method may converge if you have a coefficient wrong, but it’s unlikely to
have the desired order of accuracy. If you don’t know A0, you can still compute
a Richardson ratio like (61), but it would be

A(4h)−A(2h)

A(2h)−A(h)
.

Many time stepping methods for ODE solving have asymptotic error expan-
sions. See exercise 4 for an example. An important detail is to take the correct
number of time steps. If you use n time steps of size ∆t to get to time T , you
must use exactly n/2 steps to get to time T with steps of size 2∆t. This is
possible if n is even. If you compute the number of time steps with the formula
n = T/∆t, rounding may give you a number that is off by 1.

6 Exercises and examples

1. You can check the Taylor series calculations in Subsection 2.2 by checking
that they give the right answer for one component systems

ẋ = f(x) , ẍ = f ′(x)f(x) ,
d3

dt3
x = f ′′(x)f2(x) + (f ′(x))

2
f(x)

Check that this is consistent with the terms given in Subsection 2.2. Cal-
culate the next term here (hint: one of the terms is f ′′′(x)f3(x)). If you
have the energy, calculate the term by finishing the calculation started in
Subsection 2.2 and show that these also are consistent.

2. The forward Euler method applied to ṁ = bm+ c is

mn+1 = (1 + ∆tb)mn + ∆t c .

Show that this always under-estimates the solution if b > 0 and a > 0 and
m(0) > 0. That is, show that the hypothesis imply that

m(t) ≥ (1 + tb)m(0) + tc .

Use this to finish the induction step in the proof of (45).

3. Consider the linear ODE system (29) where A is a d× d matrix. The flow
map for a linear ODE system is a linear map. The matrix that represents
this map, S(t), is called the fundamental solution or the solution operator:

Φ(x0, t) = S(t)x0 .

26

The fundamental solution satisfies the matrix differential equation

Ṡ(t) = AS(t) . (62)

The initial condition is that at time zero we have the identity matrix:

S(0) = I . (63)

(a) Show that the short time Taylor expansion of the fundamental solu-
tion is

S(t) = I + ∆tA+ ∆t2 1
2A

2 + ∆t3 1
6A

3 + · · · .

Find the formula for the rest of the terms, which are familiar from
the power series expansion of the exponential.

(b) Show that taking the terms up to and including ∆tp yields a time
step method for this linear ODE system of order p. The method is
xn+1 = Qpxn, which more explicitly is

xn+1 =

(
I + ∆tA+ · · ·+ ∆tp

1

p!
Ap
)
xn .

(c) Show that there is a Horner’s rule factorization of Qp of the form

Qp = I + ∆tA
(
I + 1

2∆tA (I + · · ·) · · ·
)
.

(d) Give an algorithm for evaluating Qpx that involves p matrix vec-
tor multiplies involving A. Interpret this as a p stage Runge Kutta
method of order p. The algorithm should have the form that is sim-
plified from the general Runge Kutta multi-stage form (identify the
coefficients a2, · · · ap, b):

k1 = Ax

k2 = A (x+ ∆t a2k1)

k3 = A (x+ ∆t a3k2)

...

Qpx = x+ ∆t b kp .

(e) Show that this algorithm has order p of accuracy when applied to
the linear ODE ẋ = Ax.

(f) This is sometimes called a low storage method. Show that this
method can be implemented using storage for only two vectors of
size d if matrix vector multiply can be done with storage for a single
vector. Remark: Low storage can be significant when d is comparable
to the machine memory size.

27

(g) Consider the nonlinear version for nonlinear ODE ẋ = f(x):

k1 = f(x)

k2 = f(x+ ∆t a2k1)

k3 = f(x+ ∆t a3k2)

...

Ψ(x,∆t) = x+ ∆t b kp .

Show that this method is second order accurate in general.

4. This exercise serves two purposes. One is to practice the convergence
proof above. The other is to look at error expansions. Consider the
forward Euler method (1) and suppose that the computed solution has
the form

xn = x(tn) + ∆t y(tn) + ∆t2 zn .

The two goals are to find a differential equation for y that proves (from
the existence theorem for differential equations) that the leading term in
the error is proportional to ∆t, and to show that zn is bounded uniformly
as ∆t→ 0 with tn ≤ t.

(a) Suppose x(t) and y(t) are smooth functions of t, so that x(tn+1) =
x(tn) + ∆tẋ(tn) + 1

2∆t2ẍ(tn) + O(∆t3), and the same for y. Plug
this into the difference equation (1) and equate the ∆t terms on both
sides. The result should be (something like)

ẏ = f ′(x(t))y + (∗∗)f ′(x(t))f(x(t)) , y(0) = 0 .

This doesn’t yet prove anything, but it does suggest what the error
looks like.

(b) Define un = x(tn) + ∆ty(tn), where y(t) satisfies the ODE of part
(a). Show that

un+1 = un + ∆tf(un) + ∆tRn ,

where
Rn = O(∆t2) .

(c) Use part (b) to show that

|xn − un| ≤ C(tn)∆t2 ,

for t less than the blow up time (as in the Theorem above, C(t) is
independent of ∆t). Conclude that the numerical solution satisfies

x(t) = x(tn) + ∆ty(tn) +O(∆t2) .

28

5. Find a set of coefficients for a three stage explicit Runge Kutta method
that make it third order.

6. Download the three Python modules used to make the Fermi Pasta Ulam
movie. As you modify this code, try to keep the same coding style and
conventions. Feel free to post your opinions of the coding and propose
better coding conventions.

(a) Modify the module that implements the forward Euler time step to
do a time step of a three stage third order accurate Runge Kutta
method. You may wish to look at the file ODE trap Lorenz.py, which
implements a two stage second order method.

(b) Apply your code to a simple problem with a known answer (nonlinear,
d > 1, but simple and solvable) to computationally verify the third
order accuracy.

(c) Choose one of the two computations:

i. Try to make the Fermi Pasta Ulam movie using this code with
a larger time step. How much less CPU time does it take. You
may wish to modify the code that decides when to make the
next movie frame so that the frame times are not subject to
accumulating rounding errors.

ii. Solved the linearized perturbation equations for the Lorenz sys-
tem and make a plot of

log (‖M(t)‖)

as a function of t. It should eventually grow linearly, so ‖M(t)‖
grown exponentially. Use this plot to estimate the principal Lya-
punov exponent and to show that the Lorenz system is chaotic.
You will have to run the code far beyond T = 30. You will either
have to choose T so that M(t) does not overflow, or do something
to renormalize away the overflow.

29

