Numerical Methods II, Courant Institute, Spring 2016
http://www.math.nyu.edu/faculty /goodman/teaching/NumericalMethodsII2016 /index.html

Lecture 3, Ordinary Differential Equations

1 The method of lines

We discretized the heat/diffusion equation in space and time. The space step
was Az and the time step was At. We often do the two discretizations sepa-
rately, replacing the space operator D9? with a finite difference approximation

u(z + Az, t) — 2u(z, t) + u(x — Az, t)
Ax?

O*u(w,t) ~

If Up € R™ is the numerical approximation at time ¢, the time step was
Ukt1 = U + AtAU , (1)

where A is the matrix representing the finite difference approximation of DJ2.
The method of lines separates the problem of space discretization from the
problem of evolution in time. It does this using the intermediate step where
we discretize in space only but keep time continuous. In the present case, this
would mean having a time dependent vector U(t) € R™ with components meant
to approximate the corresponding values of the exact PDE solution

U;(t) mu(zj,t) , x;=jAx.
The semidiscrete approximation the PDE d;u = DO?u is
U=AU. (2)

Here, we write U for %U to emphasize that (2) is a system of ordinary differen-
tial equations. The method of lines replaces a PDE for a the evolution in time
of a function of z with an ODE system for a discrete (in space) approximation.

The method of lines leads to the problem of solving (large) ODE systems.
That is the problem addressed in this week’s class. We will talk about linear
equation systems (2) or non-linear ones that have the form

U=FU). (3)

Many of the methods and much of the analysis is completely generic, applying
to any ODE system. But it is important to remember that many of our appli-
cations come from PDE discretizations that are large and have interesting and
challenging special structure that we cannot ignore (if we want a good method)
and may even take advantage of. For example, the specific matrix A we got
by discretizing 92, it has real negative eigenvalues ranging from —72D/L?, to
—n2D/L?. The ratio of largest to smallest (in the negative sense), which is the

condition number of A, is order n2. Other PDE lead to ill conditioned matrices
whose eigenvalues run up and down the imaginary axis. Methods for one type
may or may not be good for other types.

Now, for the next while, forget the origin of the problems (2) or (3), mostly
the latter. We consider time stepping algorithms to solve the initial value prob-
lem with initial conditions U(0) = Up given. We have a time step At and seek
approximations Uy = U(¢x). The simplest method is the one we just used, the
forward Fuler method

Ug+1 = U + AtF(Uy) .

This method is first order accurate, in that
Up = U(te)| < Cr, ifty <T.

The error constant depends on the time, T (very unfortunate and usually un-
avoidable), but is independent of At.

There are time stepping methods much better than forward Euler. Some are
much more accurate. Others have vastly better stability properties for ill condi-
tioned matrices. We discuss two broad classes of time stepping methods, linear
multistep methods and Runge Kutta methods (which could be called multi-stage
methods. It is possible to combine these to create multistep multi-stage meth-
ods, but such methods are not used much.

2 Linear multistep methods

We start with some motivation and examples, then present the general form of
linear multistep methods. One way to arrive at a linear multistep method is
to use a higher order approximation to the time derivative. The forward Euler
method is based on the approximation

dU N U(t+ At) = U(t)

~

E() At

This one sided difference approximation is first order accurate. The simplest
centered approximation is second order accurate

AU, U(t+At) — Ut — At)

— (0= SAT +0(Ar%) .

This leads to a second order time stepping method
Uk41 =Uk—1 + 2AtF(Uk) . (4)

This method is called the midpoint rule or the leapfrog' method.

ILeapfrog is a children’s game in which they crouch and pretend to be frogs. They take
turns jumping (leaping) over each other.

The name “midpoint rule” comes from a different view of the formula (4).
The exact solution satisfiles

t+At

U(t+ At) =U(t — At) + / U(s)ds
e
=U(t— At) + / F(U(s))ds
t—At

The midpoint rule is to approximate the integral using the integrand at the
midpoint (center of the interval):

t+At
/ f(s)ds =~ 2Atf(t) .
t—At

The leapfrog method may be derived by applying the midpoint rule of integra-
tion to the integrand f(t) = F(U(t)). The forward Euler method also can be
viewed as an integral approximation. This time it’s

t+At
/t F(s)ds ~ ALf(t) . (5)

There is a family of linear multistep methods, called Adams methods, based
on better approximations to the integrand f(s) in (5). The approximation (5)
may be “derived” by replacing f(s) by f(t). This approximation is first order
accurate: f(s) — f(t) = O(At) if t < s < t+ At and if f(s) is differentiable.

This is
t+AL t+At
/ f(s)ds%/ f(t)ds = Atf(t) .
t t

The higher order Adams methods are based on higher order approximations of
f(s) in the interval [¢,t + At]. For example, you can use the estimate

1) = f(t—At)

Then a better approximation to f(s) for s near ¢ is

F(s) = f(t) + f(t)(s — t) + O(AL?)

= iy + =IO ogar. (6)

You can integrate this to get

J() = f(t— A AR

3
X 5+ O(Ar)

t+At
/t f(s)ds = Atf(t) +

= DAU() — A - Al +O(AF)

We get an ODE time stepping scheme by using f(s) = F(U(s)):
3 1
Uky1 = U + At <2F(Uk) - QF(Uk1)> : (7)

This is the second order three level Adams Bashforth method.
The higher order Adams Bashforth methods are derived from a different
interpretation of the approximation (6). The linear function

@) - fe-a0

() = f(1) + B2 s - 1)

is (obviously) a linear function of s and it interpolates the known values at times
t and t — At:

I(t) = f(t), I(t— At) = f(t— At) |

Linear interpolation of smooth functions is second order accurate, which leads
to a second order accurate ODE solver.

The higher order Adams Bashforth methods use higher order polynomial
interpolation of the known values f(¢), f(t — At), ..., f(t —rAt). Using explicit
interpolation formulas it is possible to integrate the interpolating polynomial of
order r over the interval [t,t 4+ A]. The result is a time stepping method of the
form

Uks1 = Ui + At (bo F(Uy) + b1 F(Ug—1) + - - + 0, F(Up—,)) - (8)

The » = 0 method if forward Euler. The r = 1 method is the second order
method above. In general, the method with r steps has order of accuracy r + 1.
This gives first order for r = 0 (Euler) and second order for r = 1. These
are examples of linear multistep methods. “Linear” means that the new value,
Uk+1, is a linear combination of earlier computed values Uy_; and F(Uj_;).
“Multistep” means that the scheme uses more than two time levels. These
methods predict time level k + 1 from levels £ down to £ — 7. You might call
this an r—step method. More general linear multistep methods also use old U
values:

Uks1=aoUp + -+ a,Up_r
+ At (b F(Ug) + b1 F(Ug—1) + -+ + b, F(Ug—r)) . 9)
The leapfrog method (4) is another linear multistep method that is not in the
Adams Bashforth family. It has r =1, ag = 0, a1 = 1, by = 2, and b = 0.

Methods of the form (9) are explicit because they are explicit formulas for Uy
in terms of already computed quantities.

3 Runge Kutta methods

Runge Kutta methods (named for Karl Runge and his student Kutta) are a dif-
ferent way to generalize the forward Euler method. They are one step methods,

which means that Uy is a function of Uy only. If you know Uy and not Ug_1
(or F(Ug—1), you can compute Uy.

A simple Runge Kutta method involves two stages, which means two evalu-
ations of f(u). The midpoint rule for integration (which we just used) gives

Ut+At) =U(t) + AtF(U(t + 1 At)) + O(A%) .

This is based on the midpoint integral approximation
t+At
/ F(U(s)) ds = AtF(U(t + 1A1) + O(AF) .
t

This isn’t useful as it stands because the midpoint value U(t + 3At) is not
known. The Runge Kutta solution is to predict the unknown midpoint value
using forward Euler. This leads to

~ At
Uyt :Uk+7F(Uk) (10)
U1 = Uk + AtF(Uy11) - (11)

This is a two stage method. The first stage (10) predicts the midpoint value.
The second stage (11), the corrector stage, uses the predicted midpoint value to
take the time step.

An explicit Runge Kutta method with s stages has the form

& = AtF(Ug +bii&)
&3 = AtF(Ug + ba1&1 + ba2éo) . (12)
(s = AtF(Ugp+bs& + - +bss—18s—1

Uiy1 = Up+ai&s+ - +asés . (13)

The number of stages is the number of evaluations of F'. It is common that
evaluating F' is much more expensive than the rest of the Runge Kutta calcu-
lations, so the work for one time step is proportional to the number of stages.
An s stage method is s times more work than a one stage method. There must
be compelling arguments, involving accuracy or the size of the time step, for
using a higher order multi-stage method. The forward Euler method has one
stage. The second order (as we will see) predictor-corrector midpoint formula
has s = 2 stages. The coefficients are b1; = %, and a; =0, and ay = 1.

A general explicit s stage Runge Kutta method has lots of coefficients. These
are chosen to achieve high order of accuracy or large time step stability or for
other reasons. The specific calculations can be very complicated and, and not
in a way most mathematicians call “beautiful”. We present some accuracy
calculations for the first few methods and then give a proof that a method
with that formal order of accuracy in fact has error of the order of magnitude

suggested by the order of accuracy calculation. The corresponding theory for
linear multi-step methods is in Lecture 4.

Here is some notation that we can use to state the order of accuracy claims.
The Runge Kutta method above is a complicated function that computes Uy 1
from Ug. That function will be written U1 = G(Ug, At). The exact solu-
tion to the differential equation will be written U(t + At) = S(U(¢), At). The
terminology is “motivated” by choosing G to represent a complicated function
defined by applying F' a few times. The S is for “solution”. The function
U(t+s) =S(U(t),s) is also called the flow, or the flow map corresponding to
the differential equation (3). The truncation error for a Runge Kutta method
depends on the difference between the numerical update in time At and the
update given by the exact solution of the ODE system. As we did for the heat
equation, we define the truncation error with a factor of At pulled out. This
definition of truncation error has the advantage that the truncation error has
the same order (in At) as the actual error.

AtR(U, At) = G(U, At) — S(U, At) . (14)

We will show (not right now, but soon) that if R = O(A#?) then |U, — U(tg)| <
CrAtP if t,, <T. This is pretty much the same as the convergence theorem we
had for the heat equation: the formal order of accuracy as given by truncation
error is the same order as the actual error.

The three main steps in calibrating a Runge Kutta method are:

1. Calculate the Taylor series representation for S(U, s) for small s.
2. Calculate the Taylor series representation for G(U, s) for small s.

3. Identify terms order by order, and find the relations for the RK coefficients
that make corresponding Taylor series terms equal, find solutions for the
equations.

Here is how it works out for the forward Euler method.

Step 1, the exact solution: The Taylor series for the exact solution is
Ut+s)=U(t)+sU(t) + 32U(t) + O(s*) .
The differential equation (3) immediately gives
U(t) = F(U(t)) .

You can find the second derivative by differentiating this with respect to time
and using the chain rule:
. d -
Ult)=—=-U
()=~
d
=—FU(t
SFU()
=F'(U®)U(1) (15)

We need to be careful in interpreting this when U has many components. It isn’t
so hard in this case, but it gets harder for derivatives beyond the second. For
the present second derivative calculation, (15) is just the chain rule from multi-
variate calculus, where F” is the n x n Jacobian matrix of partial derivatives and
U is in the n component column vector. For clarity, we repeat this calculation
with individual components and the less fancy version of the chain rule. The
derivative of one component is

d . dUk
%UJ dt j Z 8Uk dt Z 6Uk ().

The sum on the right may be mterpreted as component j of the product of the
matrix with components dy, F; and the vector with components Fj,. The matrix
is the Jacobian matrix, written F’.

The conclusion of this calculation is

1
U(t+At) = S{U(t), At) = U(t)—i—AtF(U(t))+At2§F’(U(t))F(U(t))+O(At3) .
(17)
The order At term on the right is familiar. The order At? term, and its cal-

culation using the chain rule, is the first indication of the complexity of Runge
Kutta method algebra.

Step 2, the time stepper: For forward Euler, the time step is linear in At¢. This
means that the first order Taylor series is exact:

G(U,At) =U + AtF(U) , exactly.

No other method is this simple, alas.

Step 3. order of accuracy. Putting together steps 1 and 2 gives
G(U, At) — S(U, At) = —%MF/(U(t))F(U(t)) +O(AR) .
The residual, therefore, satisfies
R(U, At) = —%AtF’(U(t))F(U(t)) +O(AR) = O(A) .

This is the analysis that shows the forward Euler method is first order accurate.

The analysis of two step methods will give you a clearer picture of Runge
Kutta math. The analysis (17) is accurate enough for this purpose. The differ-
ences come in step 2. Although &; depends on At in a linear way, & is some

general nonlinear function of At. The Taylor series expansion is (explanations
follow)

& = At (F(U +b11&1))
= At (F(U) + buF ()& + Ol)) (18)
= At (F(U) + Atby1 F'(U)F(U) 4+ O(At?)) . (19)

Equation (18) is the Taylor series expansion of F(U + &;). We know &; is small
because it is of the order of At. The remainder estimate O(‘f%’) is one of the
forms of the remainder estimate for multi-variate Taylor expansions. Equation
(19) just replaces |£1] with O(At).

Step 3 also becomes (for the first time) non-trivial. Before we know the
values of the parameters b1, and a1, and as, we have the general expression

G(U, At) — S(U,At) = a1 AtF(U) + az (AtF(U) + At?by F'(U)F(U) + O(AF?))
— AtF(U) — AtQ%F’(U)F(U) +O0(At3) .

We want to chose the parameters to make the right side as small as possible
(measured in powers of At. The largest term is the one proportional to At. It
is
At(a1 + ag — 1)F(U) .
Setting the coefficient of At to zero gives
a; +az = 1. (20)

The stuff involving At? is
1
At2 (agbuF'(U)F(U) — 2F/<U)F(U>> .

Setting this to zero gives the equation

1
agbn —_ = = O . (21)
2
If the equations (20) and (21) are satisfied then the residual will be second order
in the sense that:

R(U, At) = O(At?) .

There are many second order two stage explicit Runge Kutta methods.
There are three unknown parameters (b11, a1, and as) and only two equations.
Here are some of the possibilities:

e a; =0,a; =1, and b1y = % This is the predictor/corrector midpoint
rule method we discussed before. From a; = 0 and ay = 1, we have

Ugt1 = Uk + AtF(Ug 4 b11&1). But Uy + %AtF(Uk) is the forward Euler
prediction Uy 1 in (10).

e a; = %, as = %, b11 = 1. This is a predictor/corrector form of the
trapezoid rule for integration. The trapezoid rule is the approximation

t+At 1
/t F(s)ds = AL ((0) + f(t + A1) + O(AF)

The right side approximation is the area of the trapezoid (a “rectangle with
flat bottom and sloped top) that touches the graph of f at t and t + At.

We could formulate a time stepping method by taking f(s) = F(U(s)) and
then and we approximate U (ty) by Uy, then the trapezoid rule becomes

tet1 1

Uk+1—Uk’f?:/ F(U(S))dS%Ati (F(Uk+1)—F(Uk)) .
tr

The time stepping algorithm based on these approximations is called the

trapezoid rule:

Upsr = Uy, + At %(F(Ukﬂ) — F(Uy)) . (22)

This is an example of an implicit method. It is implicit in the sense that
you have to solve a system of equations to find Ugyi. The new value
Uk41 defined implicitly by the equations rather than being given by an
explicit formula. You can create an explicit approximation to the implicit
method by using a predicted value of Uy on the right. The forward Euler
prediction is B
Uk+1 ~ Uk+1 = Uk + AtF(Uk) .

This is the predictor step of a predictor/corrector method. The corrector
step is to use the prediction value U k+1 in the more accurate trapezoid rule

formula. There are two evaluations of F', one for the prediction step and
one for the correction step. This is the two stage Runge Kutta method.

The method with a; = % and ay = % and b;; = % is called Heun’s
method?. People say (e.g. the Wikipedia page on Runge Kutta methods)
that Heun’s method is the most accurate second order method, in the
sense of having the smallest error constant. 1 don’t know in what sense

this is supposed to be true.

You get a better idea how the algebra gets complicated with three stage

methods. For these, we have to calculate the next term in the Taylor series
approximation of S(U, At). We calculate the third derivative by differentiating
the second derivative. Here, you have to use the product rule and the chain
rule. We do it first informally (ignoring the fact that U and F have many
components), then with indices to see the actual result.

d3 d ..
Ut =2U)
= % [F/(U(t))F(U(t))]
_ (CZF/(U(t))> FU) + F'(U)) (jtF(U(t)))

= F"(UM))UFU) + F'(UM0)F (U®)U()
= F'(U®)F' (U®)FU®) + (F'(UW®)* FU®) .

2Like Kutta, Heun was a PhD student of Runge. I think Heun came first with the second
order method, while Kutta developed the fourth order method that is often called the Runge
Kutta method.

The actual multi-variate result is like this, but with something like matrix prod-
ucts instead of ordinary multiplication. The multi-variate object F” is a matrix,
which is an objet with two indices. The multi-variate object F” has three in-
dices.

zgk aUach ()

The derivative calculation is, following the previous informal one,
.. d
7= (Z 2 >>
(00,00, F3 (U)) F(U)Fx(U) + D> Y (00, F(U)) (9u, Fio(w)) Fy(U)

k=11=1

M= %
M:

I
51
+ =
S

s
I

NE

M=

Il
-
=~
Il
-

I
M:
M:

Ty (Ou, £ (U)) (O, Fi(u)) Fr(U) - (24)

ol
Il

1

I
-

It happens that when you do the step 2 analysis of the of the discrete time
step map G(U, At) you get the same terms 77 and T», multiplied by stuff that
depends on the a; and bj;. Therefore, you have to satisfy two equations at order
At3 to make a Runge Kutta scheme third order accurate.

For a three stage explicit Runge Kutta scheme there are six parameters and
four equations. The parameters are

ai, az, az, b1, bar, baa .

The equations are one for consistency (first order accuracy), one for second or-
der, and two for third order. Since there are more parameters than unknowns,
and because nature smiles on this calculation, there are again families of solu-
tions.

3.1 Convergence of Runge Kutta methods

The convergence proof for Runge Kutta methods follows the consistency /stability
template we used before. Consistency is the fact that the exact solution almost
satisfies the discrete equation. Stability is the fact that if someone almost sat-
isfies the discrete equation, then that someone is close to the discrete solution.

The consistency step for Runge Kutta methods is, but for notation, (14). The
discrete equation is Ugy1 = G(Ug, At). The exact solution satisfies U (tx41) =
S(U(tr), At). With (14), this gives

Ultier) = G(U(tr), At) + AtR(U (), At) .

A Runge Kutta method is formally order p if |R| < CAtP.

10

The stability of Runge Kutta methods must have hypotheses. The function
F(U) in the ODE (3) is Lipschitz continuous, with Lipschitz constant Ly, if

|[F(U) - F(V)| < Lf|U-V] . (25)

Your differential equations class [that you should have taken should have] ex-
plained that it is natural to assume that F' is Lipschitz continuous. We assume
this for now, and come back to discuss the more realistic situation where F' is
only locally Lipschitz continuous.

Runge Kutta stability is easy because if F' is Lipschitz continuous, then G
has the stability property

IG(U, At) — G(VAL)| < (1+ LAY |U — V] (26)

The proof of this is an induction that relies on the fact that the coefficients b;,
and a; are numbers with some specific values. Write n; for the values of “¢;”
in (12) you get starting with V instead of U. Assuming that F' is Lipschitz
continuous, the first stage of (12) satisfies

&1 = m|=At|F(U) - F(V)| < LrAL|U = V] .
The second stage satisfies

&2 — m2| = At[F(U +b11&1) — F(V + byym)|
< AtLp |U =V +byy (€1 —)|
< AtLy (JU = V| + [b11] €1 — m])
< AtLy (U = V| + b | AtLs U = V) .

Since At is going to zero, we may At so small that At |b11| Ly < 1. Then we get

This reasoning applies to the other stages. Finally, the update (13) satisfies

GU) =GV = U=V + a; (& =)

IN

U=V +la;| 1€ — nl
J
<|WU-=V|+CLALIU - V] .
This is the stability inequality (26).
There are some important things to say about the stability inequality and

its derivation. But first, here are the convergence proof and corresponding error
estimate. Define the error bound Cp by

T
Cr=C / eletdt (27)
0

11

We will show that
|Uk — U(t/@)‘ < APCy,, .

The proof is by induction. It is true for &k = 0 because Uy = U(ty). Now we
assume it for k and prove it for k£ 4+ 1. We use the consistency bound (14) in
the first step:

[Uk+1 = Ultrs1)| = |G(Uk, At) = (G(U(tk), At) + AtRy)|
(Uk, At) — G(U(tg), At)| + At | Ry|

G
G
(14 LaAt) Gy, + ALC] ALP

<
<

The integral (27) was chosen exactly so that
Choiy < (14 LeAt) Gy, + AtC' .

To see this,

te+ AL
Ctk+1 = Ctk +/

tr
Some comments on the proof and the stability estimate.

e The stability estimate we used in lecture 1 did not have the grown term
LgAt. The heat equation does not have growth: |u(-,¢)|| < |Ju(-,0)].
But solutions to differential equations can grow in time. The stability
estimate here has to allow truncation errors R to be amplified as time
progresses. It is essential for convergence that this growth rate remains
bounded as At — 0. A bounded growth rate (as At — 0) is stability.
If the growth rate for the numerical method goes to infinity as At — 0,
the numerical method would be unstable. The constants Lg, Lg, and Cr
must be independent of At.

e (repeat, for emphasis) There is no error growth for our earlier discrete
approximation to the heat equation, which is why we could have ||U+1]| <
||Ug|| for the simple forward Euler in time, centered difference in space
scheme. More complicated physical systems do have instabilities, which
instabilities force the stability estimate to allow some error growth. In a
time step of size At can allow growth by a factor of (1 + C/At) per time
step. The proof above shows how that works.

e (for even more emphasis) There are chaotic dynamical systems that do
have exponential amplification of small perturbations. If |U(0) — V(0)| =
g, then |U(t) — V(t)| ~ eet. The Lorenz attractor is a famous example, as
Wikipedia can explain.

e The differential equation (2) has a function F(U) = AU with Lipschitz
constant Ly ~ Az~2, because A is a finite difference approximation to
92. In the convergence proof, we needed to assume that At is so small

12

that LyAt is small. In our problem, that means At is at least as small as
Az?. Generic time stepping methods for ODE systems (3) may or may
not be good for a specific ODE system that comes from a semi-discrete
approximation to a PDE.

4 Implicit methods

A time stepping method is implicit if you have to solve a system of equations
to find Ug41. Implicit methods are common, and commonly used to solve stiff
systems of equations. An ODE system (2) is stuff if it has two properties:

1. There is a wide range of time scales in the problem. If A\; are the eigenval-
ues of A, the corresponding solutions involve e***, and the corresponding
time scale is Ile\ The ratio of the fastest to slowest time scale is

max | Ag|
min |Ag|

If A is symmetric, this ratio is the condition number of A. It is commonly
an incorrectly stated that a problem is stiff if A has a large condition
number.

2. We want to solve (2) using a time step, At, that is large compared to the
fastest time scale:
Atmax || is not small. (28)

Be aware that if (28) is satisfied, then solutions e**! will not be computed

accurately. If we want large time steps (28) it is either because

(a) we don’t care whether we get the right answer, or

Art

(b) (more commonly) because the amplitude of the e*** term is so small

that it doesn’t matter that we get it wrong.

The semi-discrete heat equation is a typical example of situation 2(b).
The fast time scale modes decay to zero so quickly (relative to the slow
modes) that they are practically absent from the calculation most of the
time. If the initial conditions are smooth, the fast decaying modes (which
are the large k£ modes) were nearly absent from the beginning. We would
like to take At small relative to the time scales present in the solution,
but not small relative to time scales present in matrix A but absent in
the solution we are calculating. If we do that with an explicit method, it
will be unstable. High £ modes will grow when they should decay. This
is what makes a problem stiff.

The backward Euler method is a simple implicit method. It evaluates U =
F(U) at time tr41 instead of time ¢;. The formal order of accuracy is still A¢:

Ugs1 = U + AtF(Ugy1) - (29)

13

To do this scheme, you need a non-linear equation solver. Find V so that
V-AtF(V)=U. (30)

This is a system of d nonlinear equations for the unknown components of V.
There are a lot of ideas out there on how to do this. Newton’s method (from
Numerical Methods I) is a good choice (if d is not too large) because the linear
matrix A(U) = F'(U) may be available, and because we often have a good initial
guess. Here is the algorithm for one time step of the basic Newton/backward
Euler method:

1. You have Uy, Ui_1, ---. Estimate U1 using either:

(a
(b

) Constant “extrapolation”: Vy = Uy

)
(c) Higher order extrapolation
(d)

)

Linear extrapolation: Vo = 2U — Up_1

d) Forward Euler: Vi = Uy, + AtF(Uy).

(e) Something else
2. Solve the equations (30) using Newton’s method. Set j = 0.

(a) Evaluate the residual of the current approximation:
R; =V, —AtF(V;)-U.

(b) Evaluate the residual norm r; = ||R;||. This can be the most subtle
step, possibly because different components of R; have different units
(angles, positions, velocities, etc.).

(c) If rj <e, stop and set Upy1 = Vj.

(d) Calculate the next Newton iterate. Evaluate the linearization matrix
A; = F'(V;) and solve the linear system of equations

(I~ AtA) (Vs — V) = R; |

This is the main work of the method.

(e) Increment j (j += 1 or j++;) and go to step (a).

Newton’s method has local quadratic convergence. This means that if you
have a good initial guess, you “converge” (satisfy your convergence criterion
from step 2(c)) in just one or two iterations. Just one Newton iteration gives
the linear stability properties of the fully implicit method. Be aware that the
matrix A = F/(U) may have Az or Az? in the denominator. Therefore, AtA
may not be small. In fact, if AtA is small, then you probably don’t need an
implicit method3.

3This remark is aimed at all those theory people who prove theorems about implicit meth-
ods using the hypothesis that AtA is small.

14

Lecture 4 will have more on how to chose an implicit method that’s good for
a specific problem. Until then, here is some terminology. A fully implicit Runge
Kutta method with s stages would ask you to solve a system of sd equations for
the s stage values with d components each. A DIRK (for “diagonally implicit
Runge Kutta”) method is a Runge Kutta method where the stages are implicit.
That means you have to do s solves of problems of size d.

The implicit Adams methods are called Adams Moulton. The Adams Moul-
ton method with r lags is one order of accuracy higher than the Adams Bash-
forth method of the same order. For example, consider the method with just
two times t; and tpy;. The explicit method is forward Euler. The implicit
method integrates the linear interpolant between F'(Uy) and F(Ugy1). The
“area” of that “trapezoid” is At (F(Ugs+1) + F(Uy)). The resulting two point
Adams Moulton is

At
Upy1=Up + -5 (F(Ugt1) + F(Ug)) -

This is the trapezoid rule we discussed before.

5 Adaptive methods

You have to make many choices to solve a specific practical problem: ex-
plicit/implicit, order of accuracy, At. The best choice depends on the behavior
of the solution, which you (a) don’t know in advance, and (b) can change from
one time to another in a single solve. Adaptive methods are higher level algo-
rithms that automate some of these choices, depending on the problem and/or
the solution.

Here is an example that adjusts the time step of a Runge Kutta method.
Suppose G(U, At) is a Runge Kutta method that has order of accuracy r.
Adaptive time steps are not all the same size, so we have time step sizes Aty
and times tx1 = tx + Atg. The solution is advanced using those time steps:
Ug+1 = G(Uk, Atg). These approximate the true solution at times t, which
means Uy &~ U(tg). Our goal is time step sizes Aty that are small enough to
achieve a desired target accuracy, but not a lot smaller than that. In the spirit of
one-step (but multi-stage) Runge Kutta methods, Aty and Uj4q are functions
of the data available at the start of time step k. That means Uy and Atg_1.

The motion of a comet is a problem that may explain the value of adaptive
methods. Haley’s comet (see Wikepedia). This comet spends a few months
every 76 years in the inner solar system, during which time it’s direction and
speed changes noticeably from week to week. But it spends the majority of
it’s 76 year cycle much farther from the sun moving slowly and changing speed
slowly. It is possible to compute the majority of its orbit using time steps that
are far too big to get the inner approach accurately. An adaptive method can
deliver comparable accuracy using a fraction of the number of time steps needed
for an accurate solution using fixed time steps.

Error equidistribution is one approach to adaptive step size control. For
each Aty there is a residual AtRy, = G(Uy, Aty) — S(Ug, Aty). Equidistribution

15

means that we choose Aty so as to keep the rate of error production roughly
a constant, small, predetermined value, €. Of course, we need to estimate Ry,
because the exact R is not available.

It is possible to estimate R(U, At) using Richardson extrapolation. Suppose
G(U, At) is a Runge Kutta method of order p. The derivations above show that
R(U, At) has an asymptotic expansion in powers of At of the form

R(U, At) = G(U, At) — S(U, At) = R,AtP + O(AtPT!) . (31)

You can estimate R, by comparing the result of one time step with size At with

two time steps of size %At. One time step of size At gives

U =V = S(U,At) + APTLR, + O(At#PT2) |
For the half step calculation, we change in U in a half time step as
AU =G(U, 3At) —U = S(U, 1 At) — U + O(AtPT)

Using two half size time steps gives

1A
U 2M_>t S(U, %At) +2—(P+1)Atp+1Rp +O(Atp+2)

25 S(U + AU, LA + 27 CHDAPHIR, 4 2- 0D AR 4 O(A1*2) |

I claim that we can replace S(U + AU, 3At) with S(U, At) within this level of
approximation. Assuming this is true, two half steps give

1
2x 5 At

U 7% Vo=S(U,At) + 27 PAtPT R, + O(AtPT?) .

This leads to the Richardson error estimate

1

Fen = 5y ¢

Vi—Va) . (32)

e The denominator on the right is not zero because the method is at least
first order, p > 1.

e We used the relation R ~ AtPR,. This gave AtPTIR, ~ AtR.

The adaptive time step algorithm can go like this:

1. Choose parameters

e At (initial guess of time step at starting time)
Uy, t = 0 (initial conditions)
T (final time)

¢ (desired truncation error rate)

m (number of time steps between adjusting At).

16

2. (outer loop) Calculate V; using one At time step and V5 using two %At
time steps. Use the formula (32) to estimate R. Choose At to achieve
truncation rate ¢, which is

e 1/p
(| Rest|| AP = ¢ — At = — , (33)
[| Restl|

3. Take m time steps with this At.

The error estimation step 2. uses three time steps that ultimately are not used.
Therefore, we re-estimate the time step only after m steps. If m = 6, for exam-
ple, there is 50% overhead from error estimation. There are more sophisticated
adaptive strategies that have less overhead. One example is the code RKF45,
which is based on the Runge Kutta Fehlberg method. Adams methods are
often used adaptively, because the order of accuracy does not depend on the
numbers At all being the same.
What I want you to get from this section on adaptive methods:

e The best algorithm for a problem is not necessarily very simple. Doing
more complicated things, adaptivity in this case, can make a computa-
tional algorithm much more accurate, efficient, and reliable.

e Adaptive strategies do not have to be heuristic (as they often are when
done by un-lisenced numerical computing “experts”). The best adaptive
strategies are based on mathematical reasoning just as the best fixed At
strategies are.

e Because of 1. and 2., the best strategy for you, if you have a generic
problem, is to use a high quality ODE solver you download rather than
writing one yourself. People have spend many more man/woman years
developing these codes than you want to spend.

17

