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Lecture 2, Fourier and von Neumann analysis

1 The discrete Fourier transform

A plane wave (also called Fourier mode, or sine wave, ... ) is

eikx = cos(kx) + i sin(kx) .

Fourier analysis: represent a general function as a sum or integral of plane
waves

u(x) =
∑
k

ûke
ikx

u(x) =

∫
ûke

ikx dx

Uses in numerical PDE:

• Theory/analysis:

– von Neumann stability analysis: calculate the symbol of a time step-
ping method to determine whether the method is stable. Replaces
guesswork with (often painful) calculation. Is particularly useful for
high order methods.

– Qualitative behavior of numerical solution: Does it do what the PDE
does (smoothing, wave propagation, etc.)?

• Computing (often using the FFT):

– Fast solvers: solve linear equation systems that arise from special
PDE discretizations.

– Fourier/spectral methods: highly accurate methods (“spectral accu-
racy”) by using the exact PDE symbol on numerical Fourier modes.

Specifics:

k = wave number, units are 1/length

λ =
2π

k
= wavelength, units are length

eikx = Fourier mode

periodic with period λ

eik(x+λ) = eikx
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Fourier representation of periodic functions: Suppose u(x + L) = u(x) for
all x (“u is periodic with period L”). A Fourier representation of u should use
components (“basis functions”, “Fourier modes”, etc.) that also have period L,
at least:

eik(x+L) = eikx .

This implies (you do “the math”) that the wave number k must satisfy

kL = 2πm , for some integer m .

Possibilities:

• m = 0, k = 0, the constant

• m = ±1 , e±2πix/L , the fundamental

– cos(2πx/L) = 0 and sin(2πx/L) = 0 only twice in [0, L], the smallest
possible number of “nodes”.

• |m| > 1, |λ| =
∣∣ L
m

∣∣ ≤ L
2 , “higher harmonics”. These have more oscillations

(go up and down more, the real and imaginary parts), more nodes, etc.

km =
2πm

L
gives a plane wave eikmx/L = e2πimx/L = em(x) .

The functions em(x) form a “basis” (in the sense of linear algebra) for the space
of “all” periodic functions with period L. There are expansion coefficients, ûm,
so that

u(x) =
∑
m

(expansion coefficient) · (basis element)

=

∞∑
m=−∞

ûm em(x)

=

∞∑
−∞

ûm e
2πimx/L .

The sum goes over all integers (positive and negative) m because the basis
elements em(x) are linearly independent, as we will see. The non-trivial thing is
that these linearly independent modes are complete: if u is periodic with period
L and u is orthogonal to all em, then u = 0. The Fourier representation is
possible for “any” periodic function.

The Fourier modes em(x) are orthogonal in the L2 inner product. (Note:
the period L and the “L” in L2 have nothing to do with each other. One is the
for “length” and the other is for the mathematician Lebesgue, pronounced “lee
beg”, who defined L2, L1, etc.) The L2 inner product is

〈u, v〉 =

∫ L

0

u(x)v(x) dx .
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Here u is the complex conjugate of u, in case u is complex. Fourier analysis with
complex basis functions em(x) makes us use complex numbers even when the
ultimate target functions are real. We also could do “real” Fourier analysis with
real basis functions cm(x) = cos(2πmx/L), m ≥ 0, and sm(x) = sin(2πmx/L),
m ≥ 1, but all the formulas take longer to write. Functions u and v are orthog-
onal if 〈u, v〉 = 0. If m 6= n, the basis function em is orthogonal to the basis
function en:

〈em, en〉 =

∫ L

0

em(x)en(x) dx

=

∫ L

0

exp

(
2πi(n−m)

L
x

)
dx

=
L

2πi(n−m)

exp

(
2πi(n−m)

L
x

)∣∣∣∣∣
L

0


= 0 .

We need n 6= m so that the denominator on the next to last line is not zero.
We need n−m to be an integer so that

exp

(
2πi(n−m)

L
L

)
− exp

(
2πi(n−m)

L
0

)
= 1− 1 = 0 .

If n = m, then
〈em, en〉 = L .

Therefore, if u has a Fourier representation, the Fourier coefficients may be
found using orthogonality:

〈enu〉 = 〈en,
∑
k

ûkem〉

=
∑
k

ûk〈en, em〉

= L ûn .

In the sum on the next to last line, the inner product is equal to zero for all k
except k = n. Therefore the sum is equal to the term corresponding to k = n.
We rewrite this as a formula for the Fourier coefficient, in two equivalent ways:

ûn =
1

L
〈en, u〉 =

1

L

∫ L

0

e−2πinx/Lu(x) dx .

The minus in the exponent in the integral comes from the complex conjugate:
eiθ = e−iθ.

For stability (von Neumann analysis) we can tell whether a finite difference
scheme increases the size of U by a Fourier calculation. By “size”, we mean L2
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norm. Underlying this is the fact that you can tell the L2 norm of a function
from its Fourier coefficients. This is not true about the L1 norm, or any other
norm that isn’t based on L2. The algebra is (see explanations below)

‖u‖2L2 = 〈u, u〉

= 〈

( ∞∑
n=−∞

ûnen

)
,

( ∞∑
m=−∞

ûmem

)
〉

=

∞∑
n=−∞

∞∑
m=−∞

〈ûnen, ûmem〉

=

∞∑
n=−∞

∞∑
m=−∞

ûnûm〈en, em〉

=

∞∑
n=−∞

ûnûn L

= L

∞∑
n=−∞

|ûn|2 .

Here are the mathematical tricks in this:

• For the second line, we use n as the first dummy summation variable and
m as the second one. This allows you to take the summations outside and
make a double sum over both n and m.

• The inner product is “anti-linear” in the first variable, which means that
〈au, v〉 = a〈u, v〉. That’s why we have ûn. Note that ûn is a number while
en is a function: en(x) = e2π2mx/L.

• The main step is orthogonality, 〈en, em〉 = 0 unless n = m. That’s how
the double sum over n and m becomes a single sum over n. In the sum
over m, only the term m = n is different from zero.

• If z is any complex number, then zz = |z|2. Apply this to the complex
number ûn.

Summary:

• Fourier representation, Fourier inversion formula

The completeness theorem says that if the coefficients are defined as above,
then the Fourier sum converges to u. Summary:

• Fourier (series) representation/Fourier inversion formula

u(x) =

∞∑
m=−∞

ûme
2πimx/L .
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• Fourier (series) transform:

ûm =
1

L

∫ L

0

e−2πimx/Lu(x) dx .

Note: the “inversion formula” undoes the Fourier transform by calculating
the original function u from the Fourier amplitudes û.

• Plancharel theorem

‖u‖2L2 =

∫ L

0

|u(x)|2 dx = L

∞∑
m=−∞

|ûm|2 .

Next, the FFT, which stands for fast Fourier transform, or finite Fourier
transform. The finite Fourier transform is a linear operation on N component
complex vectors

U ∈ CN F
 Û ∈ CN .

We will give the formula below. It is also called the discrete Fourier transform,
or DFT, because it has all finite sums and no integrals. The direct calcula-
tion of Û from U takes O(N2) operations. The fast Fourier transform is an

algorithm that computes all N components of Û from all N components of
U in O(N log(N) operations. This makes FFT based algorithms practical for
numerical computing.

The discrete “Fourier modes” are vectors Fm ∈ CN with components

Fmj = e
2πimj
N .

These resemble the Fourier modes we used before. The resemblance will get
stronger soon. But first the algebra of the DFT. The new thing, the thing
that makes the DFT different from the continuous Fourier transform or Fourier
series, is aliasing. This is

Em+N = Em .

You verify this by using the component formulas above.

Em+N,j = e
2πi(m+N)j

N = e
2πimj
N +2πij = e

2πimj
N e2πij = e

2πimj
N = Emj .

An alias is a different name for something. The labels m and m+N are different
labels for the same vector.

The labels m = 0, 1, . . . , N − 1 all correspond to distinct vectors. Any other
label, for m outside the range 0, . . . , N − 1, is “aliased” to one of these (it is
the same vector with a different label). We show that these N vectors are
orthogonal to each other. If n 6= m and if both are in the range 0, . . . , N − 1,
then

E∗nEm = 0 .
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For a column vector U ∈ CN , the notation U∗ refers to the row vector whose
elements are the complex conjugates:

U =


U1

U2

...
UN

 ⇐⇒ U∗ = (U1, U2, . . . , UN ) .

If U and V are two vectors, then

U∗V =

N−1∑
j=0

U jVj .

This is the “algebraic” inner product for CN . We will soon define inner products
with normalizing factors as we did in lecture 1.

For the actual inner product calculation we use geometric sum formulas that
apply to any complex number z

N−1∑
j=0

zj =

{
zN−1
z−1 if z 6= 1

N if z = 1

Finally, the calculation. The inner product is

E∗nEm = E∗nEn =

N−1∑
j=0

e−2πinj/Ne2πimj/N =

N−1∑
j=0

e2πi(m−n)j/N .

If n = m, this is

E∗nEn =

N−1∑
j=0

∣∣∣e2π2jn/N
∣∣∣ = ‖En‖22 = N .

If n 6= m, the general term in the sum is

e2πi(m−n)j/N = zj , z = e2πi(m−n)/N .

Here’s the new thing (not in continuous Fourier theory): if n and m are both
in the range 0, . . . , N − 1, then |m − n| < N . That means that if n 6= m, then
z 6= 1. From the geometric series sum formula, we get

N−1∑
j=0

e2πi(m−n)j/N =

N−1∑
j=0

zj =
zN − 1

z − 1
.

But (this is the “punch line”) the numerator is equal to zero because

zN = e2πi(m−n)N/N = 1 .

That shows that Em and En are orthogonal if n 6= m in the range.
Here are the linear algebra consequences of these calculations:
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• For any U ∈ CN , there is a representation of U as a sum of discrete Fourier
modes

U =

N−1∑
m=0

ÛmEm (vector form)

Uj =

N−1∑
m=0

Ûme
2πimj/N (component form) .

We know expansion coefficients Ûm exist because the vectors Em form
a basis of CN . This is the discrete analogue of the Fourier representa-
tion/Fourier inversion formula.

• The Fourier expansion coefficients are given by

Ûm =
1

N
E∗mU =

1

N

N−1∑
j=0

e−2πijm/NUj .

These formulas are the discrete Fourier transform. The vector Û ∈ CN
is the discrete Fourier transform of U . Warning: other versions of the
DFT formulas put the 1

N factor in a different place. There has to be a 1
N

somewhere.

• Plancharel formulas in three equivalent forms, starting with the form we
use to derive it

U∗U = N Û∗Û

‖U‖2 = N
∥∥∥Û∥∥∥

2

N−1∑
j=0

|Uj |2 = N

N−1∑
m=0

∣∣∣Ûm∣∣∣2 .

• Mathematical remark: The algebra for discrete and continuous Fourier
analysis is similar. But there is a sense in which the discrete version is
much easier. Since CN is an N dimensional vector space, once we have
N linearly independent vectors, we know they form a basis. That means
that any vector U ∈ CN has a representation as a linear combination of
the basis vectors. In the DFT, we show the Em are linearly independent
by showing they are orthogonal. For continuous Fourier representations,
this “completeness” step is not easy. For Fourier series, there are famous
proofs of completeness that use the Dirichlet kernel and the Fejer kernel.

2 von Neumann analysis

Suppose we solve the heat/diffusion equation with periodic boundary conditions.
This mean

u(x+ L, t) = u(x, t) ,
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Assuming u is periodic isn’t really the same thing as giving a boundary condition
as we did before. There’s no place you would call the “boundary”. Also, there
aren’t many physical situations where the solution is periodic. Still, it’s useful to
ask what would happen if we were to apply the finite difference marching scheme
to a periodic function. It’s useful because periodic “boundary conditions” are
easier. If the scheme does something bad in this case, it is likely to do the same
bad thing with more realistic boundary conditions. (We will see some theorems
of this kind in this class.)

We are motivated to consider periodic boundary conditions because we can
study stability using Fourier analysis in that case. Suppose there are N grid
points “in space”. Then the unknowns at time tk are the N numbers that form
the components of a vector Uk ∈ RN :

Uk = (Uk,0, . . . , Uk,N−1)
t
.

The t in (· · · )t is the transpose that turns the row vector into a column vector.
Sometimes we work with the elements of Uk and sometimes we treat them
as components of a vector. It is helpful to be able to use different levels of
abstraction at the same time.

The FFT is useful for stability because the finite difference operator Uk+1 =

AUk operates as a multiplier on the Fourier components Ûk,m:

Ûk+1,m = amÛk,m . (1)

The am is the multiplier, also called the symbol, of the finite difference time-step
operator A. We will write a simple formula for it soon. The formula is used
together with the Plancharel identity that relates the L2 norm of Uk to the L2

norm of Ûk. The maximum amplification factor is

α = max
m
|am| . (2)

von Neumann stability analysis is the theorem that

‖Uk+1‖2 ≤ α ‖Uk‖2 . (3)

This inequality is sharp, which means that there is no constant smaller than α
that makes the inequality true for all U . The inequality, in general, is only for
the L2 norm. It may hold, for other reasons, for other norms, in specific cases.

Here is the proof of the von Neumann analysis inequality (3). In the Fourier
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domain we have ∥∥∥Ûk+1

∥∥∥2

2
=

N−1∑
m=0

∣∣∣Ûk+1,m

∣∣∣2
=

N−1∑
m=0

∣∣∣amÛk,m∣∣∣2
=

N−1∑
m=0

|am|2
∣∣∣Ûk,m∣∣∣2

≤ max
m
|am|2

N−1∑
m=0

∣∣∣Ûk,m∣∣∣2
= α2

N−1∑
m=0

∣∣∣Ûk,m∣∣∣2
= α2

∥∥∥Ûk∥∥∥2

This shows that
∥∥∥Ûk+1

∥∥∥ ≤ α ∥∥∥Ûk∥∥∥. The Plancharel identity is, for some specific

constant that depends on your conventions of norm and Fourier transform,

‖U‖2 = CP

∥∥∥Û∥∥∥
2
.

This identity is true only for L2 norms, which is why von Neumann analysis is
only for L2. We get the inequality (3) by applying the Plancharel identity once
at level k + 1 and again at level k:

‖Uk+1‖2 = CP

∥∥∥Ûk+1

∥∥∥
2
≤ CPα

∥∥∥Ûk∥∥∥
2

= α ‖Uk‖2 .

To see that the inequality is sharp, let m∗ be the mode that achieves the maxi-
mum in (2). Then α = |am∗ |. Suppose Uk is the corresponding Fourier mode

Uk,j = e2πim∗j/n .

Then Uk+1 = am∗Uk, and ‖Uk+1‖ = α ‖Uk‖.
The explicit three point finite difference scheme we used last week is

Uk+1,j = b−1Uk,j−1 + b0Ukj + b1Uk,j+1 .

The coefficients were

b−1 = b1 =
D∆t

∆x2
, b0 = 1− 2D∆t

∆x2
.

The basis of von Neumann analysis is the fact that we can plug Fourier modes
in here and get a simple result:

Ukj = e2πimj/n =⇒ Uk+1,j = ame
2πimj/n .
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For example,

Ukj = e2πimj/n =⇒ Uk,j+1 = e2πim(j+1)/n = e2πim/ne2πimj/n .

The first factor on the right, e2πim/n, doesn’t depend on j. That makes e2πim/n

a Fourier multiplier. The rest of the calculation is

b−1Uk,j−1 + b0Ukj + b1Uk,j+1 =
(
b−1e

−2πim/n + b0 + b1e
2πim/n

)
e2πimj/n .

This gives the symbol (Fourier multiplier) as

am = 2 cos(2πm/n)b1 + b0

= 2 cos

(
2πm

n

)
∆tD

∆x2
+ 1− 2

∆tD

∆x2

am = 1 + 2
∆tD

∆x2

[
cos

(
2πm

n

)
− 1

]
.

This symbol formula is all you need, so you could stop here. But it can be
done more simply. First, the big constant is the dimensionless CFL number

λ =
∆tD

∆x2
.

This makes a shorter formula

am = 1− 2λ

[
1− cos

(
2πm

n

)]
.

Second, the arguments of cos are numbers

θm =
2πm

n

which are uniformly spaced in the interval 0 = θ0 to 2π− 2π
n = θn−1. As n→∞,

these numbers become “dense” in the range 0 ≤ θ < 2π. The symbol is

am = 1− 2λ [cos(θm)− 1] .

We’re interested in the maximum modulus (maximum or minimum, whichever
is “larger”) of the numbers am when n is large. Since cos(θ) is a continuous
function of θ, as n→∞, this converges to

max
0≤θ<2π

|a(θ)| .

We can solve this simple calculus problem without asking precisely where the
numbers θm fall. If the maximizer is

θ∗ = arg max
0≤θ<2π

|a(θ| ,
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then as n →∞, the θm closest to θ∗ converges to θ∗. Therefore, the minimum
over the finite (but large) set {θm} converges to the continuous minimum. In
the present example, we need to solve the minimization problem

α = min
0≤θ<2π

|1− 2λ [1− cos(θ)]| .

This is easy. The cosine has range between 1 and −1. The maximum is
attained at one of these. When θ = 0 and cos(θ) = 1, we get a(0) = 1. This is
independent of λ. When θ = π and cos(π) = −1, the symbol is

a(π) = 1− 2λ(cos(π)− 1) = 1− 4λ .

Clearly (think about this) |a(π)| ≤ 1 if a(π) ≥ −1, which is

λ ≤ 1

2
.

That is the CFL restriction we had last week. One difference here is that it
isn’t guesswork, but a calculation. Also, now we know that if the condition is
violated the time stepping scheme definitely is unstable.

The symbol and Fourier modes are eigenvalues and eigenvectors of the one
step matrix A. Let Vm ∈ Cn be the vector whose components are the complex
exponentials

Vm,j = e2πimj/n .

The calculation above is just

AVm = amVm .

We calculated above that the Fourier mode vectors Vm are orthogonal. If m′ 6=
m (in the range 0 ≤ m < n and 0 ≤ m′ < n), then

〈Vm, Vm′〉 = 0 .

Therefore, the norm of A, in L2, is equal to the largest eigenvalue (in modulus)1.
There are other ways, and possibly more physical, to think about the discrete

Fourier modes Vm. These differ in the way the “Fourier” variable (m or θ) is
scaled. However you scale the Fourier variable, you have to scale the space
variable (j or y or x, see below) accordingly. Suppose you use θ, with discrete
values θm = 2π

n . We call the corresponding space variable y (the name is
irrelevant). Its discrete values are yj = j. The distance between neighboring θ
values is ∆θ = 2π

n . The distance between neighboring y values is ∆y = 1. The
product is ∆θ ·∆y = 2π

n . This product will be the same for all of the scalings
we consider. The values of the discrete Fourier modes are

Vm,j = eiθmyj .

1Warning: This is for periodic boundary conditions. Eigenvalue analysis can be wrong
with other boundary conditions. There are unstable schemes with |λm| ≤ 1 for all m. We
will see an example, for a different PDE, with Dirichlet boundary conditions.
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This may be written

(Vm,0, Vm,1, Vm,2, . . .) =
(
1, eiθ, e2iθ, . . .

)
.

As we saw last week, the time step formula (forward Euler in time, centered
difference in space) may be written in terms of left and right shifts. The left
shift moves components one spot to the left. If W = SLU , then Wj = Uj+1. If
U is one of the Fourier modes, then the components of W = SLU are

Wj = Uj+1 = ei(j+1)θ = eiθeijθ .

This may be written as SLVm = eiθVm. Similarly, the right shift satisfies
SRVm = e−iθVm. The scheme is

Uk+1 = AUk = (b1SL + b0Ib−1SR)Uk .

Acting on a Fourier mode, this becomes

AVm = b1e
iθ + b0 + b−1e

−iθ .

Here is the advantage of this scaling. It makes the symbol calculation very
simple. Just put in eirθ for a shift by r units to the left in the difference scheme.

I present one more scaling. This one has the advantage that the space
variable, called x here, is given in the physical units of the problem. If the
problem is on a “periodic interval” of length L (a bit of an oxymoron, u(x +
L, t) = u(x, t), then the space variable runs from 0 to (almost) L. The Fourier
variable will be called2 p. If xj = j∆x with ∆x = L/n, then the relation

eipmxj = e2πimj/n ,

gives

pmxj =
2πmj

n
, xj =

jL

n
=⇒ pm =

2πm

L
.

The spacings are ∆x = xj+1−xj = L
n , and ∆p = pm+1− pm = 2π

L . As we said,
the product is ∆x∆p = 2π

n .
This scaling is good for seeing the relation between the discrete Fourier

transform and Fourier series. This representation is easier to interpret if we use
a different set of labels for the Fourier modes. Instead of 0 ≤ m < n, we use a
set of modes that is as symmetric as possible around m = 0. If n is odd, then we
use m = −n+1

2 , . . . , 0, . . . , n−1
2 . For example, for n = 5, the mode labels would

be (−2,−1, 0, 1, 2). This is exactly symmetric. For n even, we have the small
asymmetry of having one more positive mode than negative. For example, for
n = 6, we take m = (−2,−3, 0, 1, 2, 3). In either case, we will write |m| ≤ n

2 ,

2Physicists use p for momentum. In quantum mechanics, a “state” with momentum p has
“wave function eipx/~, where ~ (pronounced “h bar”) is a physical constant that may be set
equal to 1.
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though it isn’t exactly true in either case. If Uj is a set of grid values, the
representation is

Uj =
∑
|m|<n

2

Ûme
ipmxj .

If u(x) is periodic with period L and Uj = u(xj), then the finite Fourier sum is
equal to u at the grid points. As the grid points become more densely spaced
(as n→∞ and ∆x→ 0), we have the limiting formula

u(x) =

∞∑
m=−∞

ûme
ipmx =

∞∑
m=−∞

ûme
2πimx/L .

Now recall that ∆x = L
n , so

ûm = lim
n→∞

1

n

n−1∑
j=0

e−ipmxju(xj)

=
1

L
lim
n→∞

∆x

n−1∑
j=0

e−ipmxju(xj)

=
1

L

∫ L

x=0

e−ipmxu(x)dx

=
1

L

∫ L

x=0

e−2πimx/Lu(x)dx .

These are the usual Fourier series formulas you can find in a book.
In designing finite difference methods we often want to compare a finite

difference operator to the corresponding differential operator. Symbol calculus
(calculating with symbols of operators) can be helpful for that. A simple ex-
ample is the first derivative operator ∂x and the second order centered finite
difference approximation

∂xf(x) ≈ D0(∆x)f(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
.

We set f(x) = eipx and calculate the symbol of the differential operator

∂xe
ipx = ipeipx .

This says that the symbol of the differentiation operator is a(p) = ip. Similarly,
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we can calculate the action of the finite difference operator on the plane wave:

D0(∆x)eipx =
eip(x+∆x) − eip(x−∆x)

2∆x

=
eipxeip∆x − eipxe−ip∆x

2∆x

=
eip∆x − e−ip∆x

2∆x
eipx

=
i

∆x

eip∆x − e−ip∆x

2i
eipx

=
i sin(p∆x)

∆x
eipx

This says that the symbol of D0(∆x) is a(p) = i sin(p∆x)
∆x . What is the relation

between these two symbols? For each fixed p, we have

a(p,∆x)→ ip , as ∆x→ 0 .

In fact, it’s second order accurate

a(p,∆x) = i
sin(p∆x)

∆x
+O(∆x2)

= i
p∆x− 1

6p
2∆x3 + p5O(∆x5)

∆x

= ip− ip3

6
∆x2 +O(∆x4) .

Here is the interpretation of this formula. The operator D0 is supposed to
estimate the derivative of a function. So how well does it do on a plane wave.
For any fixed plane wave, which means a fixed p, the result is second order
accurate as ∆x → 0. That’t the second order accuracy of the three point
centered difference formula. Recall that the wavelength of a plane wave is

λ =
2π

p
.

The argument of the sine function is

p∆x =
1

2π

∆x

λ
=

1

2π

1

Nw
.

Here, Nw is the number of points per wavelength, how many grid points there
are in one full cycle of the plane wave. This is a measure of how well resolved
the plane wave is. Engineers calculating waves talk about resolution in this way:
“My method gives 5% accuracy using only ten points per wavelength!”

Summary:
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• Stability in L2 is determined by the symbol, am or a(θ).

• The scheme is stable if |am| ≤ 1 for all m.

• The numbers am are the eigenvalues of the one step matrix A, which is
defined by Uk+1 = AUk.

• The corresponding eigenvectors are the discrete Fourier modes Vm with
components Vm,j = e2πimj/n. The eigenvector/eigenvalue relation isAVm =
amVm.

• The eigenvectors Vm are orthogonal, which implies that the norm of A is
given by the “largest” eigenvalue (maximum modulus): ‖A‖2 = maxm |am|.

• With a different convention, this is |a(θ)| ≤ 1 for all θ.

• The relation between mode m and θ is θm = 2πm/n.

• As n → ∞, the discrete values θm become “dense” on the circle 0 ≤ θ <
2π, so

max
0≤m<n

|am| = max
0≤m<n

|a(θm)| → max
0≤θ≤2π

|a(θ)| .

• We may take 0 ≤ θ ≤ 2π or −π ≤ θ ≤ π because a(θ) is periodic in θ with
period 2π.
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