
Numerical Methods II, Courant Institute, Spring 2016

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII2016/index.html

Always check the classes message board before doing any work on the assignment.

Assignment 4, due April ??

1. (Strang splitting) Consider the differential equation system

u̇ = f(u) + g(u) .

Splitting means alternating between solving the different terms separately.
Suppose Sf (u, t) and Sg(u, t) are the solution operators for the separate
parts. That is, u(t) = Sf (u, t) is the solution at time t for u̇ = f(u), etc.

d

dt
Sf (u, t) = f(Sf (u, t)) , Sf (u, 0) = u ,

d

dt
Sg(u, t) = g(Sg(u, t)) , Sg(u, 0) = u .

Choose a time step ∆t. Simple splitting means solving first u̇ = f for time
∆t, then solving u̇ = g for time ∆t, etc. If Un ≈ u(tn) is the numerical
solution, simple splitting is

Un+1 = Sg(Sf (Un,∆t),∆t) .

It may be clearer to express this as

Un
Sf (·,∆t)−→ Vn = Sf (Un,∆t)

Sg(·,∆t)−→ Un+1 = Sg(Vn,∆t) .

This may be a bit abstract if we do not have algorithms to calculate Sf

or Sg exactly.

(a) Show that simple splitting is formally first order accurate. That is

Sf+g(u,∆t) = Sg(Sf (u,∆t),∆t) + ∆tR(u,∆t) ,

where R = O(∆t).

(b) Strang splitting is the more symmetrical version with two half steps
of f on the outside and one full step of g on the inside:

Un

Sf (·, 12 ∆t)
−→ Vn = Sf (Un,

1
2∆t)

Sg(·,∆t)−→ Wn = Sg(Vn,∆t)

Sf (·, 12 ∆t)
−→ Wn = Sf (Wn,

1
2∆t) .

Show that Strang splitting is second order (in the same sense in which
simple splitting is first order).

1



(c) Show that n steps of Strang splitting (computing Un from U0) may
be computed using 2 applications of Sf (·, 1

2∆t), and n applications
of Sg(·,∆t) and n − 1 applications of Sf (·,∆t). Conclude that the
work for Strang splitting is almost the same as the work for simple
splitting even though Strang splitting has three “steps” per time step
while simple splitting has just two.

(d) Suppose that if Sh
f (u,∆t) and Sh

g (u,∆t) are second order accurate
approximations to Sf and Sg respectively, in the sense of part (a).
Show that the Strang splitting using Sh

f and Sh
g instead of the ex-

act versions results in a time stepping method that is second order
accurate.

(e) Consider the two dimensional advection-diffusion equation

∂tu+ ∂x(vx(x, y)u) + ∂y(vy(x, y)u) = D4 u . (1)

The function u(x, y, t) is the density of particles that are advected
(carried) by an advection velocity v(x, y) = (vx(x, y), vy(x, y)) while
at the same time diffusing with diffusion coefficient D. Equations
like this are used to model the dispersal of pollution in atmospheric
winds. Writing the equation in conservation form ensures that the
total amount of particle (number of particles) doesn’t change, which
is ∫ ∫

u(x, y, t) dxdy = Const .

We solve this equation on an n × n mesh with ∆x = ∆y, and fixed
time step ∆t. The advection equation, without diffusion, is

∂tu+ ∂x(vx(x, y)u) + ∂y(vy(x, y)u) = 0 .

We take one time step of this using the Richtmeyer predictor/corrector
conservative version of Lax Wendroff. The diffusion part, without
advection, is

∂tu = D4 u .

We take one time step of this using second order 5 point differencing
in space (three points in x and three points in y) and Crank Nicholson
in time. Show that these ingredients, plus Strang splitting, gives a
second order and stable scheme for the combined advection diffusion
equation.

2. (The same thing, but simpler) A linear constant coefficient differential
equation system takes the form

u̇ = Au ,

where u(x) ∈ Rn and A is a fixed n × n matrix. Let SA(u, t) be the
solution operator. This means the same as in exercise (1), namely that if

2



u(t) = SA(u0, t), then u̇(t) = Au(t) and u(0) = u0. The matrix exponential
is written etA, and is defined by the formula

etA = I + tA+ 1
2 t

2A2 + · · · =
∞∑

n=0

tn

n!
An . (2)

More properly, the matrix exponential is

eA = I +A+ 1
2A

2 + · · · =
∞∑

n=0

1

n!
An . (3)

The matrix exponential of tA is etA.

(a) Show that the infinite sum (3) converges. One way to do this is to
let a = ‖A‖. Then ‖An‖ ≤ an. Each term in the sum (3) is bounded
by the corresponding an

n! . The sum

ea =

∞∑
n=0

an

n!

converges for any a. In fact, the sum “starts converging” when n > a,
because then

an+1

(n+ 1)!
<
an

n!
.

(b) Show that the matrix exponential gives the solution to the linear
differential equation system in the sense that

d

dt
etA = AetA = etAA ,

and if ẋ = Ax, then
x(t) = etA x(0) .

One way to do this is to differentiate the sum (2) with respect to t.

(c) Show that ∥∥etA − I − tA∥∥ = O(t2)

. ∥∥∥∥etA − I − tA− t2

2
At

∥∥∥∥ = O(t3)

.

etc.

(d) Show that
e∆t(A+B) = e∆tAe∆tB +O(∆t2) .

Show that this is equivalent to the first order accuracy of simple
splitting for the linear ODE system

ẋ = Ax+Bx . (4)

3



(e) Show that

e∆t(A+B) = e
1
2 ∆tAe∆tBe

1
2 ∆tA +O(∆t3) .

Be careful – matrix multiplication is not commutative. Show that
this is equivalent to the second order accuracy of Strang splitting for
the linear ODE system (4). If you want to spend an hour looking
this up in Wikipedia rather than half an hour doing it yourself, look
for the Baker Campbell Housdorff formula.

3. Write a code in Python to solve the PDE (1) on an n ×m mesh in the
domain with 0 ≤ x ≤ L and 0 ≤ y ≤ 1 with periodic boundary conditions.
It is natural to choose ∆x = ∆y, so the relation between n and m is
determined by the aspect ratio, L. Take L 6= 1 only if you are interested
in different shapes. Use the velocity field

vx(x, y) = +A sin(2πx) cos(2πy) ,

vy(x, y) = −A cos(2πx) sin(2πy) .

The PDE depends on parameters A, which governs the speed of advection,
and D, which governs the diffusion. Write a code that makes a movie of
the solution by plotting the solution every so many time steps. Each movie
frame should be a contour plot of the solution at some time.

(a) Write a program to make a movie with initial conditions u(x, y, 0) =
exp(5(sin(y) − 1)). The contour plot of this initial condition should
resemble a vertical bar near y = 1

4 . The solution at later time distorts
the bar. Draw the vector field v to understand this distortion.

(b) Run the program with a variety of D values and A = 1 to see the
effect of diffusion.

(c) Do a mesh refinement study ∆x→ 0 and ∆y → 0. The code should
calculate ∆t as a function of ∆x and A and D so you don’t have to
adjust ∆t manually (which is clumsy and error prone). You should
see that you need a finer mesh to run the solution for a long time if
D is small.

(d) Experiment with initial data different from zero only when frac12−
r ≤ x ≤ 1

2 + r and frac12 − r ≤ y ≤ 1
2 + r. See how the advection

velocity field moves the solution around. Experiment with various
values of D and A.

4


