Numerical Methods II, Courant Institute, Spring 2016
http://www.math.nyu.edu/faculty /goodman/teaching/NumMethII2016 /index.html

Always check the classes message board before doing any work on the assignment.

Assignment 3, due March 77

Check Wednesday for a revised version with Problem 5 added

1. (An ezercise in von Neumann analysis) Consider solving the diffusion
equation
Ou = DO2u

using the three point centered difference approximation to 92 and second
order explicit two stage Runge Kutta in time. What is the maximum value
of the CFL parameter

DAt

 Az?
given by von Neumann stability analysis. Hint: Show that all second
order two stage Runge Kutta methods are the same (in exact arithmetic)
for linear problems.

2. Find a third order three stage explicit Runge Kutta method. Find the
equations that need to be satisfied for such a method to be third order.
Make sure your analysis works for general multi-variate nonlinear ODE.
Find one or more solutions.

3. For solving the initial value problem for d;u + Ad,u = 0, we saw that
centered second order differencing in space with forward Euler in time is
unstable. That scheme is

At
2Ax

Friedrichs (the “F” of CFL) suggested replacing Uy, on the right by

Ukt1,j = Ukj — AUgjy1 = Urj-1) -

Uyj == (Ukj41+ Urj-1) -

N |

a) Suppose we let At — 0 and Az — 0 with » = L% fixed. (Warning:
A

x
r is not dimensionless and is not the CFL number.)

(b) Show that the Friedrichs scheme is consistent and find its order of
accuracy (hint: not great).

(¢) Show that this is not a “method of lines” scheme by showing that the
method gives the wrong answer if the time step is too small relative
to the space step. Specifically, assume that At = Az? (forget units)
and show that as Az — 0 the scheme is consistent with a different
PDE, one that has a second derivative term in space.



(d) Compute the symbol and use von Neumann analysis to show that
the Friedrichs scheme is stable for the “Kreiss equation” 0;w + sd,w
as long as |§‘ < 1.

(e) (Harder) (The argument of Friedrichs, probably) Show directly that
if A is symmetric and r < ||A|| then

2 2 2
1Uksally = D 1Uksrlls = Y Uk jUss1,5 < Ukl -
J J
Hint: Use a vector identity like aiﬂ —ai = (ags+1 — ag) (akt1 + ak).

4. (Conservation form of Lax Wendroff). We saw (asserted) that many hy-
perbolic evolution problems may be formulated as systems of conservation
laws in the form

Opu+ D, f(u) = 0. (1)

For example we gave the model of a gas (compressible, inviscid) as
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We now treat the discrete values Uy; not as point values, but cell averages
Ukj = u(z, ty) dx .

~
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We saw in an earlier assignment that cell averages are second order ac-
curate approximations to the values at the cell centers. The conservation
equation leads to the relation

zj+iAx Tj+3iAx
/ w(w, tyq1) de = / u(z, ty) dx
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A conservation form scheme takes the form
Uk+17j = Ukj — At (Fk,]-i-% + Fk,j—%) .

Conservation form schemes differ in their approximations to the numer-
ical fluzes Fy, ; 41 One such scheme is the Lax Wendroff two-step pre-
dictor/corrector method. This is motivated by the (locally third order,
globally second order) midpoint rule for the flux integrals

tht1
/ flu(zy + 2Az)) dt = Atf(u(zy, + Az, + A1) + O(AL?) .

tr



The scheme predicts the midpoint values using the Lax Friedrichs method

~ 1 At
Ukt.0+3 =3 (Ug j+1 + Ugj) — AT [f(Uk,j+1) = fUk)] - (3)

The corrector step is

(a)

Upt1,j = Uy — At {F (ﬁk+%,j+%) = (ﬁk%d—%)} : (4)

Suppose that u(z,t) is a small perturbation of a constant uw. Write
this as u(x,t) = @ + 4(z,t). Show that, to leading order, u satisfies
the linearized equation

where A = f/(@). If u has n components, then A is the n xn Jacobian
matrix of first derivatives of the components of f with respect to the
components of u.

For the simplified (no entropy) gas dynamics system (2), the con-
served quantities are (mass) density uq(x,t) = p(x,t), and momen-
tum density wug(z,t) = p(x,t)v(z,t). Calculate the 2 x 2 matrix
A = f'(p,0) for this case and show that this system is equivalent to
the equation we had in class (same wave speeds).

Show that the predictor step (3) is the same as applying the Friedrichs
scheme on a grid of size %Ax for a time step of size %At to the
conservation law formulation (1).

Show that for linear problems, f(u) = Au, this two step scheme is

the same as the Lax Wendroff scheme we saw last week.



