Numerical Methods II, Courant Institute, Spring 2016
http://www.math.nyu.edu/faculty /goodman/teaching/NumMethII2016 /index.html

Always check the classes message board before doing any work on the assignment.

Assignment 2, due February 77

Corrections: (none yet)

1. (An ezercise in Taylor series order of accuracy calculation) Many com-
putations of fluid flows use cell averages rather than point values. In one
dimension, a cellis the interval of length Az about the grid point ;. That
is

Cj = [.Tj — %Ax,mj + %AJ}] .

Suppose the discrete variable U; is the cell average:

1 [%72
Uj:A—x/ ) u(z)dx .

iji

(a) Show that the cell average is a second order accurate approximation
to the point value in the cell center. That is:

‘ u(xj) — UJ‘ S OAJ‘Q .

(b) Find a fourth order “reconstruction” of the midpoint values from the
cell averages. That means, find values a_1, ag, a1 and a power p so
that

u(z;) = Uj + (Az)” (a1 Uj-1 + aoU; + a11Uj41) + O(Am4) .

2. (Serious von Neumann calculation) This exercise calls on you to construct
a fourth order explicit time stepping method for the heat equation follow-
ing a derivation of Lax and Wendroff. The scheme has a five point stencil
and finite difference coefficients that are not easy to guess. The method

has a time step constraint At < ADAz?. We will see how to find .
(a) “Review” Richardson extrapolation'. Use Richardson extrapolation
to find a fourth order approximation to the second derivative of the

form
I(z) ~ Aia:Q (b_of(x —2Az) +b_1f(x — Az) + bof(z) + brf(x + Az) + baf (x + 2Ax))

The error should be order Az?.

1One source is the beautiful book by Dahlquist and Bjérk. Another is the notes by David
Bindel and Jonathan Goodman linked from the Resources page of the class web site.




(b) Write a simply Python script to try your formula on f(x) = ¢2* and
z = 0. Get a numerical demonstration of fourth order accuracy (not
just high accuracy).

(¢) Find a second order accurate finite difference approximation to the
fourth derivative:

1
"~ A (c—of(x —2Az) + c_1f(x — Azx) + cof () + c1 f(x + Azx) + cof (x + 2Ax))
A simple way to do this is to take the second difference of the second

difference, which is a discrete version or taking the second derivative

of the second derivative. The numbers should come from row 4 of

Pascal’s triangle, but with alternating signs?: 1, —4,6, —4, 1.

(d) Suppose that u(z,t) is a smooth function that satisfies the heat/diffusion
equation
Ou = Daiu .

Show that the following is a second order approximation (this is the
idea of Lax and Wendroff):

At?D?

u(z,t + At) = u(x,t) + AtDO*u(x,t) + Otu(z,t) .

(e) Assume that At = %AI‘Q, where A is the dimensionless CFL ratio.
Use the fourth order approximation to the second x—derivative and
the second order approximation to the fourth x—derivative to get a
scheme of the form

Ujik+1 = a2Uj_a2 1 +a_1Uj_1p +aUjp +arUjr1 1+ a2Ujpa

The five coefficients (really just three because of repeats) all depend
on A but otherwise are independent of Az, At, and D. Show that
the method is formally fourth order accurate, which means that the
residual has the form AtR;j, where R = O(Axz?). Hint: This could
be hours of repetitive and dull calculation. You will make much
less work for yourself if you “show” that the residual is fourth order
without calculating an explicit formula for the residual. Mathemat-
ical reasoning will make this problem much easier than brute force
calculus.

(f) The symbol of the finite difference scheme is

m(0,\) = a_se 2 £ a_1e7% 4+ ag + are’? + axe? .
It depends on A because the coefficients depend on A. Show that
m(0) is real, for real §. Show that if X is small enough, then |m| <1
for all §. This shows that the scheme is stable for sufficiently small
CFL ratio.

2The book of Dahlquist and Bjérk has a beautiful discussion of the calculus of finite
difference operators.



(g) (extra credit, attempt only after the rest is finished) Find the maxi-
mum value of A for which the scheme is stable.

3. This exercise works through some properties of Fourier analysis. You will
know that the algebra is right when the corresponding Python computa-
tion agrees with theory. The script FourierAnalysis.py will help you get
started. The first part of the script illustrates the difference, in Python,
between assignment and deep copy, see below. The second part of the
script illustrates the Plancharel formula for the DFT. Note the factor of
n = 6, which is as it should be. Always use the built-in Python FFT
routines, except in part (3a).

(a) Write a Python script that calculates the DFT sums by direct loops
something like (but not exactly)

uHat = np.zeros(n)
for m in range(n):
for k in range(n):
uHat[m] += np.exp( 2¥pi*i*m*j/n)*ulj]

Compare the running speed of this to the built-in FFT codenp.fft.fft.
Describe n values for which one “works” and the other doesn’t. You
can do the timings informally.

(b) The left shift operator S “operates” on vectors U € CN by circular
shifting down one index. If V"= SU, then

Vi=Ujyp, 0<j<N-2, Vy_1=0Up.

Show that V,,, = s(m)U(m) and find a formula for s(m). The num-
bers s(m) are the eigenvalues of the matrix S. Verify this formula in
Python.
(¢) The function
1 .’E2
€Tr) = eiﬁ 5
Ho) = —7—;

is the probability density of a Gaussian random variable. The Fourier
transform of this function (which is called the characteristic function
in probability) is

o2

~ o0 ) 1 o0 . 22
f(k) = / e R f(g)de = —— e e 2T dr = e T .
—00 \% 2mo? —oo

Approximate the Fourier transform by

fk) =22 Y e ™ f(a;).

|z;|<R

There are two approximations, restricting the range of integration
and using the trapezoid rule for the integral. Of course, z; = jAxz,



but now j can be negative. The FFT will compute the values fat
n = Z—i +1 points. Because of aliasing, you can find values of f(k) for
a range of k values that is symmetric around k = 0. Make a plot of
f in a symmetric part of this range where f is significantly different
from zero. You can modify code from HarmonicAnalysis.py. The
hard part is scaling — mapping this continuous problem onto the
algebra problem where m runs from 0 to n — 1. Try with various
values of o, R, and Az. If the Gaussian is “well resolved”, then f
should be an accurate approximation to f. “Well resolved” means
that Az is significantly smaller than ¢ and R is significantly larger
than o. Hand in a few pictures to illustrate what can happen. Make
sure to modify the title of the plot to contain the parameters.

Assignment and deep copy: Python has names and objects. Names are
bound to objects (or is it objects bound to names?). For example, x = [2.71,3.14]
creates a name x and an object, which is the list of two floating point numbers
[2.71,3.14]. If the next line is y=x, Python creates a new name, but not a new
object. Instead, the name y is bound to the same object [2.71,3.14]; x and y
are just different names (aliases) for the same object. If the next line is x[1] =
1.41, then the object becomes [2.71,1.41]. Both names x and y are still bound
to it. This means that if you print y[1] you will get 1.41, not 3.14. Every
Python programmer I know has spent days finding a bug due to this. If you
want y to be bound to a different object that has the same value as x, you have
to do that explicitly in some way. The script posted does it using deepcopy.
The statement y=x is a shallow copy.

The above applies only to mutable objects. Roughly speaking, mutable ob-
jects have structure — lists, vectors, etc. Immutable objects are the simple ones
— integers, floating point numbers, character strings. If x is bound to an im-
mutable object, then y=x creates a new object with the same value as x and
binds it to the name y. This is a deep copy. The example above involved a list,
which is mutable. The lines:

x = 2.71
y =X

x =1.41
print y

will give 2.71.

Other languages talk about side effects of a statement; that happen when
the statement is executed that are not obvious from looking at the statement
itself. Changing a mutable object can have side effects, if there are other names
bound to the same object. Changing an immutable object cannot have such
effects.

The terminology immutable/mutable comes from the way assignments work
in Python. The statement x = (immutable v;) will create an object o1 with
that value and bind the name x to it. If x had been bound to a different object,



0g, then this re-binding does not change og, just “forgets” it. Python creates
the new object 01 rather than changing oy because oy was immutable.



