
Numerical Methods II, Courant Institute, Spring 2016

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII2016/index.html

Always check the classes message board before doing any work on the assignment.

Assignment 1, due February ?

Corrections: [(1f) corrected to have 1
∆x instead of 1

∆x2 , (2b) corrected to have
a square root, (4d) corrected to fix typo and change notation: eµx → eax, and
add more explanation. Equation (1) formatted (slightly) differently and ex-
plained.]

1. The matrix

L =



−2 1 0 · · · 0
1 −2 1 0

0 1
. . .

. . .
...

...
. . .

. . . 0
. . . −2 1

0 · · · 0 1 −2


is the three point discrete Laplace operator in one dimension with Dirichlet
boundary conditions. This matrix is so important for numerical analysis
that it is worth spending a lot of time learning about it. Suppose the
components of U ∈ RN are the values of a function u on a uniform grid
in the interval [0, R]: Uj = u(xj), with xj = j∆x, (j = 1, · · · , N) and
(N + 1)∆x = R. If

V =
1

∆x2
LU ,

then the components of V are finite difference approximations to the sec-
ond derivative of u, assuming that u satisfies the Dirichlet boundary con-
ditions u(0) = 0 and u(R) = 0. If u were a function of more variables,
for example u(x, y), the Laplace operator on u is the sum of the second
derivatives

4u = ∂2
xu+ ∂2

yu .

In one dimension, the Laplace operator is just the second derivative. For
j in the “interior” (j > 1 and j < N),

Vj =
1

∆x2
(u(xj + ∆x)− 2u(xj) + u(xj −∆x))

= ∂2
xu(xj) +O(∆x2) .

Note that this formula holds also for j = 1, because u(x1−∆x) = u(0) = 0,
and also for j = N .

1



(a) The eigenfunctions of the second derivative operator on [0.R] with
Dirichlet boundary conditions are

uk(x) = sin(kπx/R) .

These satisfy the Dirichlet boundary condition and the eigenvalue
relation

4uk = µkuk , µk = − π2k2

R2
.

Show that if Uk is the vector with components Uj,k = uk(xj), then
Uk is an eigenvector of L. Find the N eigenvalues of L, λk. Show
that they are all negative.

(b) Show by direct calculation that the “low lying” eigenvalues, λk for k
not large, are consistent with the corresponding µk in the sense that
λk/∆x

2 ≈ µk.

(c) Since L is a symmetric matrix, the eigenvalues are real (which we
already know) and the eigenvectors corresponding to distinct eigen-
values are orthogonal (which isn’t that hard to check if you wish).
You may assume the orthogonality for this problem. The quadratic
form associated with L is F (U) = 1

2U
tLU . Use the sign of the eigen-

values to show that F (U) < 0 if U 6= 0. Hint: write an expression
for F (U) that involves the eigenvalues and eigenvectors of L.

(d) Show that ∇F (U) = LU for any symmetric matrix L.

(e) Show that

F (U) = −1

2

U2
1 +

N∑
j=2

(Uj − Uj−1)
2

+ U2
n


= −1

2

N+1∑
j=1

(Uj − Uj−1)
2

 .

The second version refers to U0 and UN+1, which are implicitly taken
to be zero.

(f) Suppose u(x) is a differentiable function. The Dirichlet integral is

D(u) =
1

2

∫ R

0

(u′(x))
2
dx .

Show that if Uj = u(xj) and u is a smooth function of x, then

D(u) = − 1

∆x
F (U) +O(∆x2) .

The quadratic form related to L is consistent with the Dirichlet in-
tegral (with the correct ∆x pre-factor).

2



2. In finite dimensional linear algebra there is a theorem that any two vector
norms are equivalent in the sense that they determine the same Cauchy
sequences. The technical statement is that if ‖v‖a and ‖v‖b are any two
vector norms on RN , then there is a constant Cab so that

1

Cab
‖v‖a ≤ ‖v‖b ≤ Cab ‖v‖a .

Another way to say this is that the condition number of ‖·‖b relative to
‖·‖a is well defined and finite. This condition number is

κ =

max
‖v‖a=1

‖v‖b

min
‖v‖a=1

‖v‖b
. (1)

Here,
max
‖v‖a=1

‖v‖b

is the maximum value of ‖v‖b over all vectors v with ‖v‖a = 1.

(a) Find the condition number of the discrete L2 norm and the discrete
L∞ norm with respect to the discrete L1 norm. In each case, the
condition number is a power of N (the dimension). What are the
extremal vectors that give the min and max in (1)?

(b) Suppose M is a positive definite symmetric N × N matrix. Show
that ‖v‖M =

√
vtMv is a norm. Show that the condition number of

the norm relative to L2 is the square root of the condition number
of M , which is λmax(M)/λmin(M).

3. Consider the advection diffusion equation

∂tu+ s∂xu = D∂2
xu . (2)

This equation models a substance that is is being carried (advected) with
speed s while it diffuses with diffusion coefficient D. We may call s the
“wind speed”, if we think u representing the concentration of a chemical
in moving air. If s > 0, the chemical is being carried from the left to
the right. For this reason, left is the upwind direction and right is the
downwind direction. If s < 0, then the downwind direction is to the
left and upwind is to the left. You can see this by choosing a moving
coordinate, y, so that if x = C + st (x moves to the right with speed s),
then y = C. This is y = x− st.

(a) Show that (2) in the moving coordinate system becomes ∂tu = D∂2
yu.

If you move to the right with speed s and watch u, you see only
diffusion, not advection. For this part, assume that u is defined for
all x, not on a finite domain.

3



(b) Construct a finite difference approximation to (2) that builds on the
finite difference approximation given in class for the heat equation.
Use the second order centered difference approximation

∂xu(x, t) ≈ u(x+ ∆x, t)− u(x−∆x, t)

2∆x
.

Show that the resulting approximation is formally second order ac-
curate as we did in class for the heat equation.

(c) Show that this method is stable, as long as D > 0 and ∆x is small
enough. The stability is in L∞, L2 and L1.

4. For intuition and numerical work below, we record come exact solutions
of the diffusion/heat equation and the advection/diffusion equation.

(a) The formula

ub(x, t) =
A√
t
e−

x2

4Dt , (3)

represents a spreading blob. Show that this satisfies the diffusion
equation (2) with s = 0, without boundary conditions.

(b) A blob that spreads, and moves moves with speed s, has the form

ub(x− st, t) .

Show that this satisfies the advection-diffusion equation (2) for any
s, if there are no boundaries. Hint: this is the same as exercise (3a)
above.

(c) A separation of variables solution has the form u(x, t) = f(x)g(t).
Consider the diffusion equation (2) with s = 0. Apply Dirichlet
boundary conditions u = 0 when x = 0 or x = L. Find the separation
of variables solutions of the diffusion equation with f(x) = sin(πx/L).

Hint: Use notation ġ(t) = dg(t)
dt and f ′ = df

dx . Some algebra gives
ġ
g = Df ′′

f . The left side depends only on t while the right side depends
only on x, so both must be constant and equal to the separation

constant λ: ġ
g = λ and Df ′′

f = λ.

(d) Find the separation of variables solutions of the advection-diffusion
equation (2) with f(x) = eax sin(πx/L). Here, a is a constant that
depends on s. Show that, particularly for large s, u is larger near the
downwind boundary than the upwind boundary.

5. For this exercise you will need access to Python 2.7 and the packages numpy
and matplotlib. Python 2.7 is available from many sources for free down-
load. If you have trouble, please post on the class message board. Down-
load the Python script HeatEquationAnimation.py that goes with this
assignment. If you type python HeatEquationAnimation.py, it should
create a movie file HeatEquation.mp4 in the same directory. The movie

4



should be identical to HeatEquationCheck.mp4 posted with this assign-
ment. If it takes more than a few minutes to run on your computer, try
making the parameter n smaller.

(a) Modify HeatEquationAnimation.py so that the initial data are f(x) =
sin(πx/L). Check that the solution is the one you derived in exercise
(4c). Of course, it won’t be exactly the same, so you have to allow
some error. The approximation should get better if you keep T the
same and increase n.

(b) Modify HeatEquationAnimation.py to solve the advection-diffusion
equation (2). There should be a parameter s in the code. Make a
movie using s = 10 with the blob initial data and see that it moves
to the right as it spreads.

(c) Check that your code gets the separation of variables solution from
exercise (4d) correctly.

(d) Experiment with the code in some way that you find interesting. For
example, you may see that the solution with blob initial data comes
to resemble the separation of variables solution as it starts to decay.
You may try blob solution that start more narrow. You may need a
smaller n for the solution to be computed accurately. You may wish
to violate the time step stability condition ∆t ≤ .5 ·∆x2. If you do,
the solution should look nothing like the true solution. If you feel
like hacking the code instead, you may modify the movie code to plot
the exact and approximate solution in each frame.

5


