
Numerical Methods II, Courant Institute, Spring 2014

http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2014/index.html

Getting started with C++

Many computational assignments for this class use C++. Most Unix based
operating systems (Linux, Ubuntu, OSX.x, ...) come with gnu C++ compilers.
You start with a source file, which is PoissonSolver.cpp in this case. Download
this from the class web site into a separate working directory and go to that di-
rectory in a command window. The command: g++ -c -g PoissonSolver.cpp
(the -c and -g are explained below) will compile the source code and produce
an object file PoissonSolver.o. Or, the compiler will give error messages that
say something is wrong with your code. Only fix the first reported error and
try the compile command again. You link the object file to make an executable
using the command: g++ -g PoissonSolver.o. This makes a file called a.out.
You run the executable by typing: ./a.out. You should get output that starts:

Hello, from the Poisson solver

The Python language is interpreted, not compiled. The python program is
the interpreter that runs Python source files. The C++ compile and link process
creates an executable program, an application, that runs on its own without an
interpreter. For that reason, it can do a computationally intensive task faster
than the Python interpreter. See the Resources page for links to introductory
material on C++.

The bullet numbers in the comments correspond to the bullets below:

1. A line of C++ code ends with a semi-colon. These 5 lines are declarations
of the signatures of procedures that are used in the main program below
but are not defined until after that. The C++ compiler is a one pass
compiler, which means it reads the lines of code only once, in the order
they have in the source file. Every variable and every procedure has to be
defined before it is used.

2. Unlike Python, you have to specify the type of a variable when it is created.
The Python interpreter determines the type from context. Normally, any
declaration (saying the type and variable name) should have a comment
saying what the variable is. The const (for constant) means that the value
of this variable does not change after the variable is defined. It is not
necessary, but it lets the compiler catch certain bugs at compile time. For
example, the line N = 2; draws the error message: error: read-only
variable is not assignable. Reading a variable means learning its
value. Writing a variable means changing that value. A const variable is
read-only.

3. This is a lot like defining u to be an array of doubles. To say exactly what
this is, you have to know about classes and templates in C++. Basically,

1

the vector template defines a vector class for each variable type. You
would define Bp (for B′, our dual box) as a vector of N integers using:
vector<int> Bp[N];.

4. This #define statement is a macro. The compiler substitutes the defi-
nition, which is ((i) + (j)*(N)), for l(i,j,N) before it compiles. A
macro is not a procedure. The parentheses are needed because the macro
is expanded using direct text substutition. For example, this code has
l(i,j+1,N), which expands to (i) + (j+1)*N, which is what we want.
If the definition had been i + j*N, it would have expanded to i + j+1*N,
which is wrong.

5. The l(i,j,N) macro is a way to make a one dimensional C++ array look
like a two dimensional array. We would like to refer to uij with code
such as u[i,j], but C++ does not support multi-dimensional array (a
disadvantage over Python and Matlab). Defining a macro allows us to
write u[l(i,j,N)]. The “l” stands for “linear”, for the position in the
“linear array” u.

6. You have to write lots of code taking care of boundary conditions even
though most of the points are not at the boundary.

2

