
Numerical Methods II, Courant Institute, Spring 2014

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII2014/index.html

Always check the classes message board before doing any work on the assignment.

Assignment 5, due end of finals week

Corrections: (none yet)

1. (An example for Krylov space methods) Let A be the tridiagonal matrix
with 2 on the diagonal and −1 on the off diagonals. Consider the d × d
matrix with d = 2M + 1 (an odd number, for simplicity only). Consider
x ∈ Rd, with components labelled (x−M , . . . , x0, . . . , xM ). Consider the
Krylov space Kn(A,x0), with x0 having components x0,j = 0 if j 6= 0,
and x0,0 = 1. Find a formula for

λ1,n = min
x∈Kn(A,x0)

xtAx
xtx

.

Conclude that λ1,n is not a good estimate of the true lowest eigenvalue
λ1(A) if n is not close to M ≈ d/2, for large d.

2. (An example of ill conditioning) Consider the gradient descent line search
algorithm for solving Ax = b with positive definite symmetric A. The
problem is equivalent to minimizing F (x) = 1

2x
tAx−xtb, over x of course.

Let xn be the current iterate, and pn = −∇F (xn) be the (negative) gradi-
ent. Line search means taking xn+1 = xn + tnpn. Consider an optimized
line search strategy would take the step size, tn, to minimize F (xn + tpn).
The minimization is a one dimensional minimization over t, with xn and
pn fixed.

(a) Is resulting iteration is linear? That means: the error at stage n is
en = xn − x. Is there a matrix B with en+1 = Bxn?

(b) Show that this algorithm has the orthogonality property pt
n+1pn = 0.

(c) Consider the problem in two dimension d = 2 with Q(x) = 1
2x

tAx
and Q1(x) = x2

1 + εx2
2. Give a quantitative description of the conver-

gence rate of this method (a description involving some power of ε)
as ε→ 0. You may find the orthogonality property useful.

3. (The A-stable second order BDF formula)

(a) Find a difference approximation of the form

∂xu(x) =
1
h

[c2u(x− 2h) + c1u(x− h) + c0u(x)] +O(h2) .

1



(b) Use this formula to construct a second order implicit ODE time step-
ping method of the form

xn = a1xn−1 + a2xn−2 + ∆tf(xn) .

Second order accuracy (as we have seen) is equivalent to third order
local truncation error, which means that the exact solution to (̇x) =
f(x) satisfies

x(t) = a1x(t−∆t) + a2x(t− 2∆t) + ∆tf(x(t)) +R(t,∆t) ,

where the local truncation error satisfies R(t,∆t) = O(∆t3). Show
that the coefficients a1 and a2 are completely determined by this
order of accuracy.

(c) Show that this method is A-stable, which means that it is stable
when applied to ẋ = λx for any ∆t > 0 as long as Re(λ) ≤ 0.

4. (adaptive method) This exercise asks you to create a more reliable version
of the ODE solver you wrote in the last assignment.

(a) Upgrade the solution algorithm from three stage Runge-Kutta to a
four stage fourth order accurate Runge Kutta method. You can get
the coefficients for the fourth order method from a book or from
Wikipedia. That’s what you would do in practice. Use the unit test
procedures you wrote for the previous assignment to verify the fifth
order local truncation error and fourth order overall error. If you
wrote good code for the previous assignment, this should be easy. I
hope you are impressed with the difference good code and unit testing
can make.

(b) Time step adaptivity chooses time step ∆tn in order to keep the
overall error within a specified tolerance. The solution times are
tn+1 = tn + ∆tn, and the corresponding approximation values are
xn ≈ x(tn). Let S(x,∆t) be the approximate nonlinear solution
“operator” constructed by the one step (and four stages) of the
Runge Kutta method. If ẋ = f(x), then the local truncation er-
ror is R(x,∆t) = S(x,∆t) − x(t + ∆t). You should already have a
procedure that takes one Runge Kutta time step with given ∆t. In
the present notation, this means evaluating S(x,∆t) for a given x
and ∆t. The result of taking two time steps of size ∆t/2 is

S2(x,∆t) = S(S(x,∆t/2),∆t/2) .

Show that

S2(x,∆t)− S(x,∆t) = C R(x,∆t) +O(∆tp+2) ,

for a Runge Kutta method of overall order p. The constant C depends
on p, but not on the specific ODE. Interpret this as saying that
S2(x,∆t)− S(x,∆t) is an accurate error estimator.

2



(c) Write an adaptive ODE solver using the above error estimator. At
each time step, make sure that ∆tn is chosen so that

‖R(xn,∆tn)‖ ≤≈ ε∆tn .

The symbol ≤≈ means “approximately less than or equal”, so the
left side could be a little larger than the right side, but not much.
One way to do this is: start time step n with a guess ∆tn = ∆tn−1.
Estimate the truncation error. If it is too large, reduce ∆tn by a
factor of 2. If it is too small, increase ∆tn by a factor of 2. Make
sure you don’t try to both increase ∆t and decrease it in the same
time step, because that can lead to an infinite loop. One way to do
this is to write a procedure that calls the time stepper three times
and returns the size of the estimated error.

(d) Use this fancy adaptive method on your interacting body simulation
with up to, say, ten bodies. Try to make some visualization that
shows the time step dynamically growing and shrinking as bodies
separate and come close to each other. With luck, you should not
see the false ejections many of you got with fixed time step methods.
Make a movie, but be careful that movie time should be physical
time, not iteration number. Email the instructor and the grader a
tarball of the code you used.

3


