
Numerical Methods II, Courant Institute, Spring 2014

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII2014/index.html

Always check the classes message board before doing any work on the assignment.

Assignment 4, due April

Corrections: (none yet)

Runge Kutta methods (named for Karl Runge and his student Martin Kutta)
are time stepping methods for solving the initial value problem for ordinary
differential equations

ẋ = f(x) .

with initial data x(t0) = x0. There are time steps ∆tn, which do not have to be
the same size, and discrete times tn+1 = tn + ∆tn. The approximate solution at
time tn is Xn ≈ x(tn). The exact increment of x is ∆xn = x(tn+1) − x(tn), so
x(tn + ∆tn) = x(tn) + ∆xn. The approximate increment is ∆Xn = Xn+1−Xn.
Runge Kutta methods have the feature that ∆Xn is a function of Xn (and ∆t
and f), but not on earlier values Xk for k < n. Therefore, they are called one
step methods. We write ∆Xn = Ψ(Xn,∆t). The exact solution “operator” is
written x(t+∆t) = x(t)+Φ(x(t),∆t). The error after n steps is en = Xn−x(tn).
The one step error is R(x,∆t) = Ψ(x,∆t) − Φ(x,∆t). This plays the role of
residual in Runge Kutta methods.

Taylor series expansion is the main tool used to design Runge Kutta meth-
ods. We use index notation and the summation convention. Component i of f
is fi. Indices after a comma represent partial derivatives, such as

fi,j(x) = ∂xj
fi(x) , fi,jk(x) =

∂2fi(x)
∂xj∂xk

, etc.

The summation convention is that there is implicitly a summation over repeated
indices in a product, so

fi,jfj =
n∑

j=1

∂fi(x)
∂xj

fj(x) , fi,jkfjfk =
∑
j,k

∂2fi(x)
∂xj∂xk

fj(x)fk(x) , etc. (1) sc

1. (Exact solution, short time) Show that the exact solution operator Φ has
the informal expression

∆x = ∆tf +
∆t2

2
f ′f +

∆t3

6
f ′′f2 +

∆t3

6
f ′2f +O

(
∆t4

)
. (2) es

More completely, this is xi(t + ∆t) − xi(t) = ∆tfi(xt) + · · · . Show that
f ′f and f ′′f2 are given in index notation by the expressions in (

sc
1). Find

the index expression for f ′2f . Hint: Differentiate ẋi = fi(x) to get ẍi =
fi,j ẋj = fi,j(x)fj(x), etc.

1

2. (Two stage method) An explicit two stage Runge Kutta method has the
form

v1 = ∆tf(x)
v2 = ∆tf(x+ αv1)

∆X = a1v1 + a2v2 .

A Taylor expansion gives the informal expression v2 = ∆tf+∆t2αa2f
′f+

O
(
∆t3

)
. Find the formal expression for v2 up to this order. Show that

the one step error is O
(
∆t3

)
if the following equations are satisfied

a1 + a2 = 1 (3) fo

αa2 =
1
2
. (4) so

Find the values of a1, a2, and α that correspond to the following examples

(a) (predictor/corrector midpoint rule) The midpoint rule for integration
is ∫ t+∆t

t

f(x(s))ds = ∆tf(x(t+ ∆t/2)) +O
(
∆t3

)
.

Use the forward Euler first order prediction of the midpoint value:
X̃ = x+ ∆t

2 f(x), then use the midpoint approximation to the integral
∆X = ∆tf(X̃).

(b) (predictor/corrector trapezoid rule, Heun’s method) The trapezoid rule
for integration is∫ t+∆t

t

f(x(s))ds = ∆t [f(x(t)) + f(x(t+ ∆t/2))] /2 +O
(
∆t3

)
.

Use a first order prediction x(t+ ∆t) ≈ X̃ = x+ ∆tf(x) in this.

3. A Runge Kutta method with third order one step error is second order
accurate. The solution of a linear differential equation system ẋ = Ax
involves the matrix exponential

etA = I + tA+
t2

2
A2 +

t3

6
A3 + · · · .

Show that any two stage second order accurate method applied to a linear
ODE has the effect of using this Taylor expansion up to second order:

∆X =
(
I + ∆tA+

∆t2

2
A2

)
x .

Conclude that all second order two stage Runge Kutta methods have the
same linear stability diagram.

2

4. Show that second order two stage Runge Kutta methods are unstable for
linear hyperbolic problems for any CFL number.

5. Find the stability limit ∆t < λD∆x2 (find the maximum value of λ) when
you apply a two stage second order Runge Kutta method to the diffusion
equation ∂tu = D∂2

xu, with ∂2
x discretized using the standard three point

approximation.

6. (Runge Kutta methods are a mess) A three stage Runge Kutta has the
form

v1 = ∆tf(x)
v2 = ∆tf(x+ αv1)
v3 = ∆tf(x+ βv1 + γv2)

∆X = a1v1 + a2v2 + a3v3 .

Show (lots of algebra) that this leads to the index expression informally
given as

∆X = ∆t (a1 + a2 + a3) f (5) fo3

+ ∆t2 [a2α+ a3(β + γ)] f ′f (6) so3

+ ∆t3
[a2

2
α2 + a3(β + γ)2

]
f ′′f2 (7) to1

+ ∆t3a3αγf
′2f (8)

+O
(
∆t4

)
.

Use this to write four equations involving the six coefficients a1, a2, a3, α, β, γ,
that make the method third order accurate overall. Find a three stage
third order Runge Kutta method with all positive coefficients.

7. Show that any three stage third order Runge Kutta method, when applied
to ẋ = Ax, is equivalent to using the Taylor expansion of the matrix
exponential up to and including the terms of order ∆t3. Show that these
schemes are stable for hyperbolic problems if the CFL condition λ ≤ λ∗ =√

3 ≈ 1.73 is satisfied. (not necessarily an action item: It is surprising how
simple this calculation turns out to be. A similar calculation shows that
the four stage fourth order Runge Kutta method is stable for hyperbolic
problems with CFL limit λ ≤ 2

√
2 ≈ 2.83. Increasing the number of

stages from three to four (a 33% increase) increases the maximum step
size by 63%.)

ut 8. (First unit test. This sequence of steps results in a software package for
adaptive solution of ODE systems and a movie of planets moving around
a star. The system is build and tested piece by piece, always using in-
frastructure borrowed from previous programming assignments.) Create
a file RK3.C that contains a procedure

3

void RK3(double dx[], double x[], double dt, int n,
double v1[], double v2[], double v3[])

This procedure should implement one time step of size ∆t your third order
three stage Runge Kutta method for a system in Rn. It should put the
computed ∆x in the array dx. It can write in the scratch arrays v1, v2,
v3, which is assumes have been allocated to size n. It should not write
into the array x. It evaluates f(y), for any y ∈ Rn by calling a procedure

void f(double xd[], x)

The code to implement this f should be in a different file someName.C.
It should know the size of x, so f does not need n as an argument.

Create a file OneStepVerify.C that contains a int main() program that
tests your RK3 procedure using standard convergence analysis. It should
test whether one step with your procedure RK3 has one step error O

(
∆t4

)
.

You can learn about this kind of Taylor series convergence analysis in
section 3.3.1 of

http://www.cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf

Use the test problem

f1(x1, x2) = (1 + x2
1 + x2

2)x2

f2(x1, x2) = −(1 + x2
1 + x2

2)x1

with initial condition x(0) = (0, 1). The solution is x(t) = (sin(2t), cos(2t)).
Put the code implementing this f in a file called f2D.C. Implement/modify
a Makefile so that typing make OneStepVerify links the object files
OneStepVerify.o and f2D.o and RK3.o to create the executable OneStepVerify,
and then runs OneStepVerify. The output should be some numbers get-
ting close to 16 = 24, which indicate that the one step error of your method
is O

(
∆t4

)
. The code in Assignment4.tar gives hints how this and the

next parts can be done. When you unpack this tarball and type:
make nBodyMovie, you should get output:

hello, n bodies. Interact.
initialize
The time stepper says hello
The time stepper says hello
The time stepper says hello

9. (Next unit test) Create a file FixedStepVerify.C that contains a int
main() that solves an ODE the ODE with initial data x(0) = x0 up to
time T using as many steps of size ∆t as necessary. This should consist
mainly of a sequence of calls to RK3(...). Do a convergence study on the

4

ODE and initial data of part (
ut
8) up to time T = 4π, which corresponds to

4 full revolutions. Verify that the result is third order accurate. Add some
lines to the Makefile so typing make FixedStepVerify links the object
files FixedStepVerify.o and f2D.o and RK3.o to create the executable
FixedStepVerify, and then runs FixedStepVerify. Add some lines to
the Makefile so that typing make UnitTest does both unit tests. Be
careful to get the dependencies right so that if you change, say, RK3.C,
typing make UnitTest will cause it to re-compile and re-link.

10. (The gravitational n body problem) Suppose in space there are p co-planar
bodies with positions r1, . . . , rp, with rk ∈ R2, and masses m1, . . . ,mp.
According to Newton’s theory of gravity, body k pulls on body j with a
force

Gmjmk
rk − rj
|rk − rj |3

.

The force on body rj is in the direction towards rk with a strength pro-
portional to |rk − rj |−2, which is the inverse square law. The force is
proportional to the two masses. From now on, we choose a time scale so
that the universal gravitational constant is equal to 1. The motion of the
bodies interacting by gravity is given by the equations of motion

r̈j = Aj(r1, . . . , rp) =
∑
k 6=j

mk
rk − rj
|rk − rj |3

. (9) em

The initial value problem is to give rj(0) and ṙj(0), then compute the tra-
jectories rj(t) using the equations of motion (

em
9). These can be formulated

as a system of n = 4p differential equations

x4(j−1)+1 = rx,j (the x−component of rj)
x4(j−1)+2 = ry,j (the y−component of rj)
x4(j−1)+3 = ṙx,j (the x−component of ṙj)
x4(j−1)+4 = ṙy,j (the y−component of ṙj) .

This convention makes x1 = r1,x, and x8 = ṙ2,y, etc. The ODE system
for x(t) is

d

dt

(
x4(j−1)+1

x4(j−1)+2

)
=
(
x4(j−1)+3

x4(j−1)+4

)
d

dt

(
x4(j−1)+3

x4(j−1)+4

)
=
(
Ax,j(r1, . . . , rp)
Ay,j(r1, . . . , rp)

)
.

Create a file fnb.C with a version of f that implements these ODEs. It
should use a fixed small time step and print the trajectories to a file so
that a Python program (which you also should write) can read them and
make a movie. Start with two bodies, in which case the result should
be elliptical motion about the center of mass. Then add more bodies to

5

make more interesting movies. The command make nBodyMovie should
build the simulator, run the simulator, then run the Python movie maker.
Experiment with different numbers of planets, different masses and initial
conditions. Email the movie you think is the most interesting.

The file fnb.C should have two procedures (at least), one to evaluate f(x),
and one to set the initial conditions.

11. (Adaptive solver) Omitted. The assignment is long enough already.

6

