
Numerical Methods II, Courant Institute, Spring 2014

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII2014/index.html

Always check the classes message board before doing any work on the assignment.

Assignment 3, due March ??

Corrections: (none yet)

1. (Consistency using symbols) In this problem we have a discrete function
with values Uj , or Un,j if time dependent. We have a function u(x, t)
defined for all x and t ≥ 0. We write the continuous Fourier representation
of u(x, t) as

u(x, t) =
∫ ∞
−∞

eipx û(p, t) dp . (1) cF

The wave number in this representation is p = 2π/L, where L is the wave
length. The grid function Uj,n has Fourier representation

Uj,n =
∫ π

−π
eikjŨn(k) dk . (2) dFk

The discrete frequency parameter k can be called the cell wave number,
because 2π/k is the number of cells (j values) in one period of eikj . We
want to rescale k to compare U to u when we think Uj,n ≈ u(xj , tn), with
xj = j∆x and tn = n∆t. The relation is chosen to make the following
true: pxj = kj, which gives k = p∆x.

(a) Suppose u(x, t) satisfies the scalar advection equation

∂tu+ s∂xu = 0 .

Show that
û(p, t+ ∆t) = m(k,∆t) û(p, t) , (3) em

where
m(k,∆t) = e−iλk . (4) emf

with λ = s∆t/∆x being the CFL number. Assume the above relation
between p and k. This is the symbol of the exact solution to the PDE.
It is exactly on the unit circle, |m(k,∆t)| = 1.

(b) The Lax Wendroff finite difference approximation is

Uj,n+1 = Uj,n−
s∆t
2∆x

(Uj+1,n − Uj−1,n)+
s2∆t2

2∆x2
(Uj+1,n − 2Uj,n + Uj−1,n) .

Define the symbol of this by

Ũn+1(k) = M(k, λ) Ũn(k) . (5) M

Calculate M and show, for fixed λ, that M(k) = m(k)+O(k3). Show
that |M(k, λ)| ≤ 1 for all k if and only if |λ| ≤ 1.
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(c) The trapezoid rule scheme is the implicit scheme that approximates
∂xu at time tn and tn+1:

Uj,n+1 = Un,j −
s∆t
4∆x

(Uj+1,n − Uj−1,n + Uj+1,n+1 − Uj−1,n+1) .

Calculate the symbol for this scheme and show that |M(k, λ)| = 1
for all k. The definition (

M
??) still applies, but now you have to solve

an algebraic equation to get a formula for M . Do it in the Fourier
domain.

(d) A general explicit one step two level scheme has the form

Uj,n+1 =
∑
h

ah(λ)Uj−h,n .

If the scheme is explicit with a finite stencil, then there are finitely
many non-zero coefficients ah. The scheme is accurate of order p
(this p is not the wave number) if

u(xj , tn+1) =
∑
h

ah(λ)u(xj−h, tn) + ∆tRj,n

Rj,n = O(∆xp) .

We always assume λ = s∆t/∆x is fixed. Show that a scheme is
accurate of order p if the symbol satisfies

m(k) = M(k) +O(kp+1) .

(e) Use the general method of part (1d) to show that the trapezoid rule
is second order accurate.

2. (Well posedness) Consider the system of equations

∂tρ+ a∂xu+ b∂xv = 0

∂tu+ c2u∂xρ = 0

∂tv + c2v∂xρ = 0 .

Show that this is a well posed system of hyperbolic equations with three
distinct real propagation modes if and only if the following condition is
satisfied: ac2u + bc2v > 0.

3. (A stability computation with applications) Consider a three point one-
sided two level schemes for the first order linear scalar advection equation
∂1u+ s∂su = 0:

Uj,n+1 = a(λ)Un−2,n + b(λ)Uj−1.n + c(λ)Uj,n
Uj,n+1 = a(λ)Un+2,n + b(λ)Uj+1.n + c(λ)Uj,n .

Here λ = s∆t/∆x is the CFL number.
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(a) Find formulas for the coefficients a, b, and c that make the method
second order accurate. This should be possible for both schemes and
for any λ.

(b) Show that the geometric CFL condition requires one of these schemes
to unstable at any CFL number and the other to be unstable if λ > 2.
The one that is allowed to be stable for 0 < λ ≤ 2 is called upwind
differencing. The other one is called downwind. Can you explain this
terminology in terms of ordinary wind?

(c) Use von Neumann analysis to find the actual stability limit of the
second order three point upwind scheme.

4. (Multi-Dimensional problems) Consider the hyperbolic system in two di-
mensions ∂tu + A∂xu + B∂yu = 0. Suppose A and B n × n matrices.
Suppose ∆x = ∆y and Uj,k,n ≈ u(xj , yk, tn), with xj = j∆x, yk = k∆y,
and tn = n∆t.

More specifically, suppose u = (ρ, ux, uy)t is the unknown for the 2D lin-
earized compressible gas dynamics equations and A and B are the matrices
we gave in class. Define the CFL number to be λ = c∆t/∆x. This is a
dimensionless measure of the time step.

(a) Consider the approximations ∂tu← (Uj,k,n+1−Uj,k,n)/∆t, and ∂xu←
(Uj+1,k,n−Uj−1,k,n)/(2∆x), and ∂yu← (Uj,k+1,n−Uj,k−1,n)/(2∆x).
Show that these lead to a scheme that is formally first order accurate
but is unstable by von Neumann analysis for any λ.

(b) Show that the Lax Wendroff idea leads to a second order accurate
method with a nine point stencil, which means that Uj,k,n+1 depends
on the nine values Uj−1,k−1,n, . . ., Uj+1,k+1,n. Use the geometrical
CFL condition to show that the scheme is unstable if λ > 1. Use the
analytical von Neumann stability analysis to show that the scheme is
stable for sufficiently small λ. If you have extra time, find the actual
stability limit.

sw 5. (Shallow water equations) The one dimensional shallow water equations
describe the following situation. There is a bottom bathymetry given by a
function b(x), which is the height of the bottom of a water channel as a
function of x (x being the distance along the channel or in the direction
the wave is moving). There is water above the bottom, whose height is
given by h(x, t). The vertical distance from the surface of the water to
the bottom of the channel is h(x, t)− b(x). The water flows mainly in the
x direction with a speed that is almost independent of the height, z. The
idealized water velocity is u(x, t). The dynamics of h(x, t) and u(x, t) are
given by local conservation laws for mass of water and momentum. The
model assumes that the water is incompressible, and its density of water
is a constant, ρ. It turns out that the value of ρ is irrelevant for shallow
water dynamics.
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(a) Show that the total mass of (two dimensional) water in the channel
between x = x1 and x = x2 is (we used x1 = a and x2 = b in class,
but now b is the bottom, so the notation has to change)

ρ

∫ x2

x1

(h(x, t)− b(x)) dx .

Assume that the water flow in the channel at x is horizontal with
velocity u(x, t). Show that the mass flux at x is

ρ

∫ h(x,t)

b(x)

u(x, t) dz = ρu(x, t) (h(x, t)− b(x)) .

Use this to derive the conservation of water equation

∂th(x, t) + ∂x [u(x, t) (h(x, t)− b(x))] = 0 . (6) cwn

(b) The x−momentum between x1 and x2 is

ρ

∫ x2

x1

∫ h(x,t)

b(x)

u(x, t) dzdx = ρ

∫ x2

x1

(h(x, t)− b(x))u(x, t) dx .

The momentum advected across the point x1 is ρ(h(x1, t)−b(x1))u2(x1, t).
The pressure force at x1 is

ptot(x1, t) =
∫ h

b

p(x1, z, t) dz .

In the shallow water approximation, the pressure at a depth d below
the water surface is the weight of the water above, which is gρ d,
where g is the gravitational constant (g ≈ 10m/sec2 on earth). Show
that the total pressure force at x1 is

gρ

2
(h(x1, t)− b(x1))2 .

This gives total x−momentum flux (or current) equal to

ρ(h(x1, t)− b(x1))u2(x1, t) +
gρ

2
(h(x1, t)− b(x1))2 .

cd (c) For the next few parts make the constant depth assumption that b
is a constant independent of x. For simplicity, take this constant
to be b = 0. Assume there is no momentum transfer between the
bottom of the channel and the water in the channel. We will revise
this assumption below. Derive the conservation of momentum (more
properly, x−momentum) equation

∂t (h(x, t)u(x, t)) + ∂x

(
h(x, t)u(x, t)2 +

g

2
h(x, t)2

)
= 0 . (7) cmn

The equation looks nicer with the arguments left out:

∂t (hu) + ∂x

(
hu2 +

g

2
h2
)

= 0 .
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(d) Suppose h(x, t) = h+ ḣ(x, t), and that u(x, t) = u̇(x, t) with ḣ and u̇
small. Derive the linearized constant depth shallow water equations,
which is a pair of evolution equations for ḣ and u̇. Show that, in
this model, shallow water waves move to the right or to the left with
speed

s =
√
gh .

Assume the ocean is 4 km deep and that Japan is 8000 km from Cali-
fornia, and that tsunamis move like shallow water waves in the deep
ocean (they do). Show that it takes about 11 hours for the tsunami
to cross from Japan to California, which is about how long it takes.

(e) Suppose that the wave is strictly left moving, which means that the
solution takes the form ḣ(x, st) and u̇(x− st). Find a relation,

αḣ+ βu̇ = 0 ,

with fixed constants α and β depending only on h and g, that must
be satisfied.

vd 6. (Shallow water equations, variable depth) This exercise leads to a modifica-
tion of the shallow water system when we drop the constant depth assump-
tion. The new thing here is that a sloping bottom, which is ∂xb(x) 6= 0,
applies a force in the x−direction on the water in the channel. The force
per unit length is −pbot(x, t)∂xb(x), where pbot is the pressure at z = b(x),
which is the bottom of the channel. The minus sign is so that the force
pushes the water to the right if the channel is sloping downward to the
right, which is ∂xb(x) < 0.

(a) Start with the integral x−momentum conservation form

d

dt
ρ

∫ x2

x1

(h− b)u dx = Fx2 − Fx1 −
∫ x2

x1

pbot∂xb dx ,

where Fx1 is the x−momentum flux rate (current) at x1 from before.
Assume u and h are smooth and derive a differential equation

∂t(h− b)u+ ∂x

[
(h− b)u2 +

g

2
(h− b)2

]
= −g(h− b)∂xb . (8) vdm

Show that u = 0 and h = h = const satisfies this equation. This
is the sanity check check that water not moving with a flat surface
satisfies the equation even in a variable depth channel.

(b) Assume small ḣ and u̇ and derive the small disturbance linearized
version of the variable depth shallow water system

∂tḣ+ ∂x
(
(h− b(x))u̇

)
= 0 (9)

∂tu̇+ g∂xḣ = 0 . (10)
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7. (Computation) This is the next step in programming. Download the file
Assignment3.tar. Put it in a separate directory and unpack it using
tar -xvf Assignment3.tar. Download the program ffmpeg and put it
somewhere. Create a directory WaveMovieFrames in the directory with
the rest of the code. Edit the Makefile to changes the lines

PYTHON = /Users/jg/anaconda/bin/python
FFMPEG = /Users/jg/bin/ffmpeg

so that they represent the correct paths on your system. Then type
make WaveMovie.mpg. If all goes well, you will get a file WaveMovie.mpg,
which is an mpeg movie. On a mac, you view the movie typing open
WaveMovie.mpg.

Modify the program to solve the linearized shallow water equations with
periodic boundary conditions. You have some freedom to try different
things, but at a minimum:

(a) Choose initial data with h(x, 0) looking like the short pulse wave in
the demo. Choose initial conditions u(x, 0) that corresponds to a
wave moving to the left.

(b) Make a movie of the wave moving to the left with both the numerical
and the exact height (one movie, two curves per frame). Choose λ =
.8 and ∆x so that you can see the difference between the computed
and exact solutions in the movie. It might help to make the movie
long enough so that the wave goes around a few times.

(c) Put in variable bathymetry. Play with a left moving wave going
over a localized disturbance of the boundary and generating a right
moving wave.
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