
Numerical Methods II, Courant Institute, Spring 2014

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII2014/index.html

Always check the classes message board before doing any work on the assignment.

Assignment 2, due February ??

Corrections: Fixed (8): mπyj −→ mπyj . Fixed the formerly silly formula in
part (3d).

1. (Spectral differentiation) Suppose u(x) is a function, xj are some points,
and Uj = u(xj) are the corresponding function values. Interpolation
means estimating values u(x) for x 6= xj . Numerical differentiation means
estimating derivatives of u either at sample points (the xj) or other points.
Use the following notation conventions: u is periodic in x with u(x +
L) = u(x). There are |B| = N uniformly spaced grid points xj = j∆x,
with ∆x = L/N . The sample values Uj = u(xj) form a vector U =
(u0, . . . , uN−1)t ∈ CN . The Fourier coefficients of u are

ûn =
1
L

∫ L

0

e−2πinx/Lu(x) dx .

The Fourier series representation of u is

u(x) =
∞∑
−∞

ûne
2πinx/L .

The dual box, B′, is as symmetric about n = 0 as possible:

B′ =



{
−N

2
+ 1, . . . , 0, . . . ,

N

2

}
, if N is even

{
−N + 1

2
, . . . , 0, . . . ,

N − 1
2

}
, if N is odd.

The DFT representation of U is

Uj =
∑
n∈B′

Ûne
2πinxj/L ,

with DFT coefficients

Ûn =
1
N

N−1∑
j=0

e−2πinxj/LUj =
∆x
L

N−1∑
j=0

e−2πinxj/Lu(xj) .

The trigonometric interpolant1 of u is

IU(x) =
∑
n∈B′

Ûne
2πinx/L .

1You can review ordinary polynomial interpolation in the excellent book Numerical Meth-
ods by Germund Dahlquist and Åke Björk.
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This is the trigonometric polynomial, P (x) =
∑
n∈B′ ane

2πinx/L, that
agrees with the known values Uj at the interpolation points xj . You can
estimate derivatives of u by differentiating the interpolating trigonometric
polynomial. For example

∂xu(x) ≈ ∂xIU(x) =
∑
n∈B′

2πin
L

Ûne
2πinxj/L .

An approximation has spectral accuracy if the error is exponentially small
when applied to an analytic function. Show that trigonometric inter-
polation and Fourier differentiation (differentiating IU(x)) are spectrally
accurate. More precisely, prove the inequalities

max
x
|u(x)− IU(x)| ≤ Ce−RN ,

max
x
|∂xu(x)− ∂xIU(x)| ≤ Ce−RN .

2. (Discrete Poisson equation) This problem focuses on possibly the worst
commonly used way to solve the Poisson problem with Dirichlet boundary
conditions on a square domain in R2. The code is for the Poisson problem,
which is the partial differential equation (PDE)

4u = ∂2
xu+ ∂2

yu = f(x, y) , (1)

when 0 < x < L and 0 < y < L, together with boundary conditions

u(x, 0) = 0 , u(x, L) = 0 , u(L, y) = 0 , u(0, y) = g(y) . (2)

The values of u on the boundary of the domain are zero except on the
left edge, where they are specified by g(y). The computational mesh will
be a lattice of grid points xi = ih and yj = jh with h = ∆x = ∆y =
L/(N+1). The interior grid points (xi, yj) are the ones with i = 1, . . . , N
and j = 1 . . . , N . These form and N ×N uniform mesh, with N points in
each direction.

We approximate the PDE using finite difference approximations to the
derivatives

∂2
xu(x, y) =

u(x+ h, y)− 2u(x, y) + u(x− h, y)
h2

+O
(
h2
)

∂2
yu(x, y) =

u(x, y + h)− 2u(x, y) + u(x, y − h)
h2

+O
(
h2
)

This motivates the standard 5 point finite approximation to the Laplace
operator

Auij =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

h2

The PDE (1) is replaced by the finite difference approximation

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij
h2

= fij = f(xi, yj) . (3)
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This equation is supposed to hold for each (i, j) of the mesh, which is
1 ≤ i ≤ N and similarly for j. It may be rewritten as

uij =
1
4

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− h2fij . (4)

These are not closed systems of equations because they refer to (i, j) values
corresponding to boundary points, which are i = 0 or i = N + 1 and
similarly for j. We get those from the boundary conditions. These give

ui,0 = ui,N+1 = uN+1,j = 0 , u0,j = gj = g(yj) .

We use these to modify the equations (4) when i = 1 or i = N , or j = 1
or j = N . For example, the equations for i = N and 2 ≤ j ≤ N − 1 are

uN,j =
1
4

(uN−1,j + uN,j+1 + uN,j−1)− h2fNj .

Note that uN,j is not related to the average of the three u values on the
right because there are three such values and we still divide by 4. This
is an essential feature of the discrete problem. The discrete boundary
conditions on the left edge (j = 1, and 2 ≤ i ≤ N − 1) are

u1,j =
1
4

(u2,j + u1,j+1 + u1,j−1) +
1
4
gj − h2f1j .

We write the inhomogeneous term on the right using F1,j = (f1,j− h−2

4 gj).

The unknowns uij are seen to satisfy a system of linear equations. Let V =
RN×N be the vector space of all grid functions. The linear transformation
M : V → V is given as u v = Mu if

vij =
1
4

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) , (5)

if 2 ≤ i ≤ N − 1 and 2 ≤ j ≤ N − 1. If j = 1 and 2 ≤ i ≤ N − 1 (the
bottom boundary), then

vij =
1
4

(ui+1,1 + ui−1,1 + ui,2) . (6)

The discrete Poisson problem is to find u ∈ V that satisfies

u = Mu− h2F , (7)

where Fij = fij unless i = 1 (the left boundary), in which case F1,j =
(f1,j − h−2

4 gj).

(a) Show that the eigenvectors of M are given by vmn ∈ V whose com-
ponents are

vmn,ij = C sin
(mπxi

L

)
sin
(nπyj

L

)
. (8)
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Hints: Observe that these grid functions satisfy discrete homogenous
boundary conditions vmn,0,j = 0, vmn,N+1,j = 0, etc. Therefore, you
can use the same definition of M at every (i, j) in the grid. The
matrix M acts in the i and j directions independently, so you can do
two one dimensional finite difference computations rather than one
two dimensional calculation. The eigenvalue is the sum of the two
one dimensional eigenvalues.

(b) Show that these eigenvectors are orthogonal in the inner product

〈u,w〉V =
N∑
i=1

N∑
j=1

uijwij .

That is, 〈vmn, vm′n′〉 = 0 if n 6= n′ or m 6= m′ with 1 ≤ m ≤ N
and 1 ≤ n ≤ N . Hint: First express the sines in terms of complex
exponentials. Then factor the double sums into single sums over
i or j separately. Then use the orthogonality we proved for single
exponential sums earlier.

(c) Write simple approximate formulas for λmax(M) and λmin(M). “Sim-
ple” means that the formulas should represent the h→ 0 asympotics.
For example, write λmax(M) ≈ 1 − π2h2/2 if the exact answer is
λmax(M) = cos(πh), or λmax(M) ≈ N2 if λmax(M) = (N + 1)2.

(d) (Consistency) For this part and the next, suppose g = 0. Suppose
the exact solution is u(x, y) and its values on the grid are Uij =
u(xi, yj) and suppose that u(x, y) has bounded derivatives up to order
4. The residual is what you get when you plug U into the discrete u
equations:

R =
1
h2

(MU − U)− f .

This is a vector identity in the vector space V . Show that ‖R‖l2(V ) ≤
Ch2.

(e) (Stability) Use what you know about the eigenvalues of M , and the
fact that M is a symmetric matrix, to show that

‖u− U‖l2(V ) ≤ ‖R‖l2(V ) ≤ Ch
2 .

The first inequality is called stability. The pair of inequalities here is
the Lax stability and consistency argument.

3. (Jacobi iteration) The system of equations (7) need to be solved somehow.
They could be solved by direct methods such as Cholesky factorization
and back substitution. Or they could be solved by iterative methods such
as the Jacobi method described here. An iterative method produces a
sequence of iterates, called u(k) here, so that

u(k) → u , as k →∞ .
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Jacobi iteration is
u(k+1) = Mu(k) − h2F . (9)

The residual after k iterations is R(k) = Mu(k) − u(k) − h2F . The error
after k iterations is E(k) = u(k)−u, with u being the exact solution. Your
solution algorithm can calculate the residual, but it cannot easily calculate
the error.

(a) Show that if R(k) → 0 as k → ∞, then u(k) → u as k → ∞. Hint:
You can use the stability theory of part (2e), or you can derive what
you need using the eigenvalues of M .

(b) Show that R(k+1) = MR(k).

(c) You can expand R(k) in the known eigenvectors

R(k) =
N∑
m=1

N∑
n=1

a(k)
mnvmn .

Of course,
a(k+1)
mn = λmna

(k)
mn .

We have implicitly used this already. Show that for large k, R(k)

is approximately proportional to the eigenvector corresponding to
λmax(M) = λ11 unless a(0)

11 = 0. More precisely, R(k) ≈ λk11a
(0)
11 v11 as

k →∞, which might be given even more formally as∥∥∥R(k) − λk11a
(0)
11 v11

∥∥∥∥∥R(k)
∥∥ → 0 as k →∞ .

(d) Let WN be the following measure of the work needed to solve the
system by Jacobi iteration:

Wn = # of iterations so that
∥∥∥R(k+WN )

∥∥∥ ≈ 1
2

∥∥∥R(k)
∥∥∥ ,

for large k. This measures the asymptotic convergence rate. Show
that WN ≈ cN2 for large N and evaluate c. This makes Jacobi
iteration the slowest way to solve the discrete Poisson problem that
is sometimes used.

4. (Poisson solving in C++) Download the C++ source and the instructions
file. The code should run and print some stuff. Note that u(x, y) =
sin(πy/L)e−πx/L is the solution that satisfies the boundary conditions.

(a) It is poor programming practice to hard wire parameters in the pro-
gram. This one has at least one hard wired constant for you to fix.
The line: if ( k%100 == 0 ){ has 100 as a hard wired constant.
Replace it with a variable
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int T\_p; \\ the number of iterations between printout

that you set where the other problem parameters are set near the
top of the code. Sometimes you will want it less than 100, sometimes
more.

(b) Experiment with various values of N and observe the asymptotic
convergence rate. Check that this is in quantitative agreement with
the theory of part (3). Find which N values make your code too slow
on your computer. You will need larger T to observe the asymptotic
convergence rate for larger N .

(c) Add some code to main that computes the error ‖u− U‖l2(V ). Check
the second order computationally. You will have to set T by trial and
error so that you have solved the equations accurately for a given N .

(d) The computational kernel of the code is the double loop in the pro-
cedure it(...). Rewrite this loop to put i in the inner loop and j in
the outer loop. Observe that the Jacobi iterations are much faster.
(You may have to take large N for this.) The reason has to do with
cache misses. Explain.
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