
Lecture Notes on Monte Carlo Methods
Fall Semester, 2005

Courant Institute of Mathematical Sciences, NYU
Jonathan Goodman, goodman@cims.nyu.edu

Chapter 2: Simple Sampling of Gaussians.
created August 26, 2005

Generating univariate or multivariate Gaussian random variables is simple
and fast. There should be no reason ever to use approximate methods based,
for example, on the Central limit theorem.

1 Box Muller

It would be nice to get a standard normal from a standard uniform by inverting
the distribution function, but there is no closed form formula for this distribution
function N(x) = P (X < x) = 1√

2π

∫ x

−∞ e−x′2/2dx′. The Box Muller method is a
brilliant trick to overcome this by producing two independent standard normals
from two independent uniforms. It is based on the familiar trick for calculating

I =
∫ ∞

−∞
e−x2/2dx .

This cannot be calculated by “integration” – the indefinite integral does not
have an algebraic expression in terms of elementary functions (exponentials,
logs, trig functions). However,

I2 =
∫ ∞

−∞
e−x2/2dx

∫ ∞

−∞
e−y2/2dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy .

The last integral can be calculated using polar coordinates x = r cos(θ), y =
r sin(θ) with area element dxdy = rdrdθ, so that

I2 =
∫

r = 0∞
∫ 2π

θ=0

e−r2/2rdrdθ = 2π

∫
r = 0∞e−r2/2rdr .

Unlike the original x integral, this r integral is elementary. The substitution
s = r2/2 gives ds = rdr and

I2 = 2π

∫ ∞

s=0

e−sds = 2π .

The Box Muller algorithm is a probabilistic interpretation of this trick. If
(X, Y) is a pair of independent standard normals, then the probability density
is a product:

f(x, y) =
1√
2π

e−x2/2 · 1√
2π

e−y2/2 =
1
2π

e−(x2+y2)/2 .

1

Since this density is radially symmetric, it is natural to consider the polar co-
ordinate random variables (R,Θ) defined by 0 ≤ Θ < 2π and X = R cos(Θ),
and Y = R sin(Θ). Clearly Θ is uniformly distributed in the interval [0, 2π] and
may be sampled using

Θ = 2πU1 .

Unlike the original distribution function N(x), there is a simple expression for
the R distribution function:

G(R) = P (R ≤ r) =
∫ r

r′=0

∫ 2π

Θ=0

1
2π

e−r′2/2rdrdθ =
∫ r

r′=0

e−r′2/2rdr .

The same change of variable r′2/2 = s, r′dr′ = ds (so that r′ = r when s = r2/2)
allows us to calculate

G(r) =
∫ r2/2

s=0

e−sdx = 1− e−r2/2 .

Therefore, we may sample R by solving the distribution function equation1

G(R) = 1− e−R2/2 = 1− U2 ,

whose solution is R =
√
−2 ln(U2). Altogether, the Box Muller method takes

independent standard uniform random variables U1 and U2 and produces inde-
pendent standard normals X and Y using the formulas

Θ = 2πU1 , R =
√
−2 ln(U2) , X = R cos(Θ) , Y = R sin(Θ) . (1)

It may seem odd that X and Y in (13) are independent given that they use
the same R and Θ. Not only does our algebra shows that this is true, but we
can test the independence computationally, and it will be confirmed.

Part of this method was generating a point “at random” on the unit cir-
cle. We suggested doing this by choosing Θ uniformly in the interval [0, 2π]
then taking the point on the circle to be (cos(Θ), sin(Θ)). This has the possi-
ble drawback that the computer must evaluate the sine and cosine functions.
Another way to do this2 is to choose a point uniformly in the 2 × 2 square
−1 ≤ x ≤ 1, 1 ≤ y ≤ 1 then rejecting it if it falls outside the unit circle. The
first accepted point will be uniformly distributed in the unit disk x2 + y2 ≤ 1,
so its angle will be random and uniformly distributed. The final step is to get
a point on the unit circle x2 + y2 = 1 by dividing by the length.

The methods have equal accuracy (both are exact in exact arithmetic). What
distinguishes them is computer performance (a topic discussed more in a later
lecture, hopefully). The rejection method, with an acceptance probability π

4 ≈
78%, seems efficient, but rejection can break the instruction pipeline and slow
a computation by a factor of ten. Also, the square root needed to compute

1Recall that 1− U2 is a standard uniform if U2 is.
2Suggested, for example, in the dubious book Numerical Recipies.

2

the length may not be faster to evaluate than sine and cosine. Moreover, the
rejection method uses two uniforms while the Θ method uses just one.

The method can be reversed to solve another sampling problem, generating
a random point on the “unit spnere” in Rn. If we generate n independent
standard normals, then the vector X = (X1, . . . , Xn) has all angles equally

likely (because the probability density is f(x) =
(

1√
2π

)n

exp(−(x2
1+· · ·+x2

n)/2),
which is radially symmetric. Therefore X/ ‖X‖ is uniformly distributed on the
unit sphere, as desired.

1.1 Other methods for univariate normals

The Box Muller method is elegant and reasonably fast and is fine for casual com-
putations, but it may not be the best method for hard core users. Many software
packages have native standard normal random number generators, which (if they
are any good) use expertly optimized methods. There is very fast and accurate
software on the web for directly inverting the normal distribution function N(x).
This is particularly important for quasi Monte Carlo, which substitutes equidis-
tributed sequences for random sequences (see a later lecture).

2 Multivariate normals

An n component multivariate normal, X, is characterized by its mean µ = E[X]
and its covariance matrix C = E[(X − µ)(X − µ)t]. We discuss the problem of
generating such an X with mean zero, since we achieve mean µ by adding µ to
a mean zero multivariate normal. The key to generating such an X is the fact
that if Y is an m component mean zero multivariate normal with covariance D
and X = AY , then X is a mean zero multivariate normal with covariance

C = E
[
XXt

]
= E

[
AY (AY)t

]
= AE

[
Y Y t

]
At = ADAt .

We know how to sample the n component multivariate normal with D = I, just
take the components of Y to be independent univariate standard normals. The
formula X = AY will produce the desired covariance matrix if we find A with
AAt = C.

A simple way to do this in practice is to use the Choleski decomposition
from numerical linear algebra. This is a simple algorithm that produces a lower
triangular matrix, L, so that LLt = C. It works for any positive definite C.

In physical applications it is common that one has not C but its inverse, H.
This would happen, for example, if X had the Gibbs-Boltzmann distribution
with kT = 1 (it’s easy to change this) and energy 1

2XtHX, and probability
density 1

Z exp(− 1
2XtHX). In large scale physical problems it may be impracti-

cal to calculate and store the covariance matrix C = H−1 though the Choleski
factorization H = LLt is available. Note that3 H−1 = L−tL−1, so the choice

3It is traditional to write L−t for the transpose of L−1, which also is the inverse of Lt.

3

A = L−t works. Computing X = L−tY is the same as solving for X in the
equation Y = LtX, which is the process of back substitution in numerical linear
algebra.

In some applications one knows the eigenvectors of C (which also are the
eigenvectors of H), and the corresponding eigenvalues. These (either the eigen-
vectors or the eigenvectors and eigenvalues) sometimes are called principal com-
ponents. Let qj be the eigenvectors, normalized to be orthonormal, and σ2

j the
corresponding eigenvalues of C, so that

Cqj = σ2
j qj , qt

jqk = δjk .

Denote the qj component of X by Zj = qt
jX. This is a linear function of X and

therefore Gaussian with mean zero. It’s variance (note: Zj = Zt
j = Xtqj) is

E[Z2
j] = E[Zj · Zt

j] = qt
jE[XXt]qj = qt

jCqj = σ2
j .

A similar calculation shows that Zj and Zk are uncorrelated and hence (as
components of a multivariate normal) independent. Therefore, we can generate
Yj as independent standard normals and sample the Zj using

Zj = σjYj . (2)

After that, we can get an X using

X =
n∑

j=1

Zjqj . (3)

We restate this in matrix terms. Let Q be the orthogonal matrix whose
columns are the orthonormal eigenvectors of C, and let Σ2 be the diagonal ma-
trix with σ2

j in the (j, j) diagonal position. The eigenvalue/eigenvector relations
are

CQ = QΣ2 , QtQ = I = QQt . (4)

The multivariate normal vector Z = QtX then has covariance matrix E[ZZt] =
E[QtXXtQ] = QtCQ = Σ2. This says that the Zj , the components of Z, are
independent univariate normals with variances σ2

j . Therefore, we may sample Z
by choosing its components by (14) and then reconstruct X by X = QZ, which
is the same as (15). Alternatively, we can calculate, using (17) that

C = QΣ2Qt = QΣΣQt = (QΣ) (QΣ)t
.

Therefore A = QΣ satisfies AAt = C and X = AY = QΣY = QZ has covari-
ance C if the components of Y are independent standard univariate normals or
the components of Z are independent univariate normals with variance σ2

j .

3 Brownian motion examples

We illustrate these ideas for various kids of Brownian motion. Let X(t) be a
Brownian motion path. Choose a final time t and a time step ∆t = T/n. The

4

observation times will be tj = j∆t and the observations (or observation values)
will be Xj = X(tj). These observations may be assembled into a vector X =
(X1, . . . , Xn)t. We seek to generate sample observation vectors (or observation
paths). How we do this depends on the boundary conditions.

The simplest case is standard Brownian motion. Specifying X(0) = 0 is a
Dirichlet boundary condition at t = 0. Saying nothing about X(T) is a free (or
Neumann) condition at t = T . The joint probability density for the observation
vector, f(x) = f(x1, . . . , xn), is found by multiplying the conditional densities.
Given Xk = X(tk), the next observation Xk+1 = X(tk + ∆t) is Gaussian with
mean Xk and variance ∆t, so its conditional density is

1√
2π∆t

e−(xk+1−Xk)2/2∆t .

Multiply these together and use X0 = 0 and you find (with the convention
x0 = 0)

f(x1, . . . , xn) =
(

1
2π∆t

)n/2

exp

(
−1

2−Deltat

n−1∑
k=0

(xk+1 − xk)2
)

. (5)

3.1 The random walk method

The simplest and possibly best way to generate a sample observation path, X,
comes from the derivation of (1). First generate X1 = X(∆t) as a mean zero
univariate normal with mean zero and variance ∆t, i.e. X1 =

√
∆tY1. Given

X1, X2 is a univariate normal with mean X1 and variance ∆t, so we may
take X2 = X1 +

√
∆tY2, and so on. This is the random walk method. If you

just want to make standard Brownian motion paths, stop here. We push on
for pedigogical purposes and to develop strategies that apply to other types of
Brownian motion.

We describe the random walk method in terms of the matrices above, starting
by identifying the matrices C and H. Examining (1) leads to

H =
1

∆t

2 −1 0 · · · 0

−1 2 −1 0 · · ·
...

0 −1
.

...
. . . 2 −1 0
. . . −1 2 −1

0 · · · 0 −1 1

This is a tridiagonal matrix with pattern −1, 2,−1 except at the bottom right
corner. One can calculate the covariances Cjk from the random walk represen-
tation

Xk =
√

∆t (Y1 + · · ·+ Yk) .

5

Since the Yj are independent, we have

Ckk = var(Xk) = ∆t · k · var(Yj) = tk ,

and, supposing j < k,

Cjk = E[XjXk]
= ∆tE [((Y1 + · · ·+ Yj) + (Yj+1 + · · ·+ Yk)) · (Y1 + · · ·+ Yj)]

= ∆tE
[
(Y1 + · · ·+ Yj)

2
]

= tj .

These combine into the familiar formula

Cjk = cov(X(tj), X(tk)) = min(tj , tk) .

This is the same as saying that the matrix C is

C = ∆t

1 1 · · · 1
1 2 2 · · · 2
... 2 3 · · · 3

...
...

...

1 2 3 · · ·
. . .

(6)

The random walk method for generating X may be expresses as

X1

...

Xn

=
√

∆t

1 0 · · · 0 1
1 1 0 · · · 0

1 1 1 0
...

...
...

. . .
1 1 1 · · · 1

Y1

...

Yn

.

Thus, X = AY with

A =
√

∆t

1 0 · · · 0 1
1 1 0 · · · 0

1 1 1 0
...

...
...

. . .
1 1 1 · · · 1

 . (7)

The reader should do the matrix multiplication to check that indeed C = AAt for
(6) and (7). Notice that H is a sparse matrix indicating short range interactions
while C is full indicating long range correlations. This is true of in great number
of physical applications, though it is rare to have an explicit formula for C.

6

We also can calculate the Choleski factorization of H. The reader can con-
vince herself or himself that the Choleski factor, L, is bidiagonal, with nonzeros
only on or immediately below the diagonal.

However, the formulas are simpler if we reverse the order of the coordinates.
Therefore we define the coordinate reversed observation vector

X̃ = (Xn, xn−1, . . . , Xn)t

and whose covariance matrix is

C̃ =

tn tn−1 · · · t1
tn−1 tn−1 t1
...

. . .
t1 · · · t1

 ,

and energy matrix

H̃ =
1

∆t

1 −1 0 · · · 0

−1 2 −1 0 · · ·
...

0 −1
.

...
. . . 2 −1 0
. . . −1 2 −1

0 · · · 0 −1 2

.

We seek the Choleski factorization H̃ = L̃L̃t with bidiagonal

L̃ =
1√
∆t

l1 0 · · ·
m2 l2 0

0 m3
. . .

...
.

 .

Multiplying out H̃ = L̃L̃t leads to equations that successively determine the lk
and mk:

l21 = 1 =⇒ l1 = 1 ,

l1m2 = −1 =⇒ m2 = −1 ,

l21 + l22 = 2 =⇒ l2 = 1 ,

l2m3 = 1 =⇒ m3 = −1 , etc.,

The result is H̃ = L̃L̃t with L̃ simply

L̃ =
1√
∆t

1 0 · · ·

−1 1 0

0 −1
. . .

...
.

 .

7

The sampling algorithm using this information is to find X̃ from Ỹ by solving
Ỹ = L̃tX̃:

Yn

Yn−1

...

Y1

=

1√
∆t

1 −1 0 · · · 0

0 1 −1
...

. 0
... −1
0 · · · 0 1

Xn

Xn−1

...

X1

Solving from the bottom up (back substitution), we have

Y1 =
1√
∆t

X1 =⇒ X1 =
√

∆tY1 ,

Y2 =
1√
∆t

(X2 −X1) =⇒ X2 = X1 +
√

∆tY2 , etc.

This whole process turns out to give the same random walk sampling method.
Had we not gone to the time reversed (X̃, etc.) variables, we could have

calculated the bidiagonal Choleski factor L numerically. This works for any
problem with a tridiagonal energy matrix H and has a name in the control
theory/estimation literature that escapes me. In particular, it will allow to find
sample Brownian motion paths with other boundary conditions.

3.2 The Brownian bridge construction

The Brownian bridge construction is useful in the mathematical theory of Brow-
nian motion. It also is the basis for the success of quasi Monte Carlo methods
in finance. Suppose n is a power of 2: n = 2L. We will construct the obser-
vation path X through a sequence of L refinements. First, notice that Xn is a
univariate normal with mean zero and variance T , so we may take (with Yk,l

being independent standard normals)

Xn =
√

TY1,1 .

Given the value of Xn, the midoint observation, Xn/2, is a univariate normal4

with mean 1
2Xn and variance T/4, so we may take

Xn
2

=
1
2
Xn +

√
T

2
Y2,1 .

At the first level, we chose the endpoint value for X. We could draw a first
level path by connenting Xn to zero with a straight line. At the second level,
or first refinement, we created a midpoint value. The second level path could
be piecewise linear, connecting 0 to Xn

2
to Xn.

4We assign this and related claims below as exercises for the student.

8

The second refinement level creates values for the “quarter points”. Given
Xn

2
, Xn

4
is a normal with mean 1

2Xn
2

and variance 1
4

T
2 . Similarly, X 3n

4
is a

normal with mean 1
2 (Xn

2
+ Xn) and variance 1

4
T
2 . Therefore, we may take

Xn
4

=
1
2
Xn

2
+

1
2

√
T

2
Y3,1

and

X 3n
4

=
1
2
(Xn

2
+ Xn) +

1
2

√
T

2
Y3,2 .

The level three path would be piecewise linear with breakpoints at 1
4 , 1

2 , and 3
4 .

Note that in each case we add a mean zero normal of the appropriate variance
to the linear interpolation value.

In the general step, we go from the level k − 1 path to the level k paths
by creating values for the midpoints of the level k − 1 intervals. The level k
observations are X j

2k−1
. The values with even j are known from the previous

level, so we need values for odd j. That is, we want to interpolate between the
j = 2m value and the j = 2m + 2 value and add a mean zero normal of the
appropriate variance:

X (2m+1)n

2k−1
=

1
2

(
X 2mn

2k−1
+ X (2m+2)n

2k−1

)
+

1
2(k−2)/2

√
T

2
Ym,k .

The reader should check that the vector of standard normals Y = (Y1,1, Y2,1, Y3,1, Y3,2, . . .)t

indeed has n = 2L components. The value of this method for quasi Monte Carlo
comes from the fact that the most important values that determine the large
scale structure of X are the first components of Y . As we will see, the compo-
nents of the Y vectors of quasi Monte Carlo have uneven quality, with the first
components being the best.

3.3 Principle components

The principle component eigenvalues and eigenvectors for many types of Brow-
nian motion are known in closed form. In many of these cases, the Fast Fourier
Transform (FFT) algorithm leads to a reasonably fast sampling method. These
FFT based methods are slower than random walk or Brownian bridge sampling
for standard random walk, but they sometimes are the most efficient for frac-
tional Brownian motion. They may be better than Brownian bridge sampling
with quasi Monte Carlo (I’m not sure about this).

The eigenvectors of H are known5 to have components (qj,k is the kth com-
ponent of eigenvector qj .)

qj,k = const · sin(ωjtk) . (8)

5See e.g. Numerical Analysis by Eugene Isaacson and Herbert Keller.

9

The n eigenvectors and eigenvalues then are determined by the allowed values
of ωj , which, in turn, are determined throught the boundary conditions. We
can find σ2

j in terms of ωj using the eigenvalue equation Hqj = σ2
j qj evaluated

at any of the interior components 1 < k < n:

1
∆t

[− sin(ωj(tk −∆t)) + 2 sin(ωjtk)− sin(ωj(tk + ∆t))] = σ2
j sin(ωjtk) .

Doing the math shown that the eigenvalue equation is satisfied and that

σ2
j = 2

1− cos(ωj∆t)
∆t

. (9)

The eigenvalue equation also is satisfied at k = 1 because the form (8) automat-
ically satisfies the boundary condition qj,0 = 0. This is why we used the sine
and not the cosine.

Only special values ωj give qj,k that satisfy the eigenvalue equation at the
right boundary point k = n.

10

