Monte Carlo Methods, Courant Institute, Spring 2017

http://www.math.nyu.edu/faculty /goodman/teaching/MonteCarlo17/

Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Assignment 2. Due march

Corrections: none yet.

This assignment illustrates several parts of Monte Carlo practice. The overall
problem is a Bayesian fitting problem, to find the parameters A;,..., A,, and

M, ...

, Am to produce a model

f(t) = zm:Aie_Mt .
i=1

The 2m parameters are to be trained in a Bayesian sense from observations

ft)=Yi+o&, i=1,...,N.

We assume that the ¢ are i.i.d. N'(0, 1), so the observation errors have a common
variance o2, which also is unknown. Overall, there are n = 2m + 1 unknowns.
These consist of the 2m variables we are interested in and the nuisance variable
o. This is a variable we are not interested in but which we have to sample in
the MCMC.

The assignment has several stages, each of which you need to code. Each
task should be in a separate Python module. The main module should import
the others.

1.

Choose true parameters and create fake data. To create fake data, you
choose times ¢;, evaluate f(¢;) exactly, add Gaussian noise, and record the
“noisy observations”. The input data to the MCMC code is the vectors
with components ¢; and Y.

Given the data and a set of parameters, evaluate the likelihood function
(formulas from assignment 1).

A procedure to take one MCMC step. That means, propose some changes
in the parameters and do the Metropolis Hastings accept/reject. The
easiest MCMC algorithm to program is isotropic Gaussian proposal with
length scale r in each variable. You will see that this doesn’t work very
well for hard problems.

Do a long run with many MCMC steps to create a collection of samples
of the posterior.

Evaluate auto-correlation functions to see the auto-correlation times of
the parameters.



6. Visualize the results by making histograms and/or scatterplots. There is
a scatterplot facility in matplotlib.

The assignment will be vague, leaving many decisions to the individual doing
it. You will be graded on the choices you make. If you do the least possible thing,
that will get a lower score. If you write Python scripts to produce enormous
amounts of data without much thought, that also will get a low score. To
get a higher score, explore some issue and try to find something interesting.
This could be about correlations in the posterior distribution, or in the auto-
correlation functions, or in good proposal distributions, or in how things scale
with m, or on how things depend on the choice of the observation points ¢; or
on the true parameters. It’s up to you.

In order to get a good grade, you must make your software as automated as
possible. You must be able to do repeated numerical experiments and visualiza-
tions with a minimal amount of typing. Otherwise, the explorations required to
get a good grade will be very very time consuming, repetitive, and frustrating.



