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Chapter 3: Variance Reduction.

1 Introduction

Variance reduction is the search for alternative and more accurate estimators
of a given quantity. The possibility of variance reduction is what separates
Monte Carlo from direct simulation. Simple variance reduction methods often
are remarkably effective and easy to implement. It is good to think about them
as you wait for a long Monte Carlo computation to finish. In some applications,
such as rare event simulation and quantum chemistry, they make practicle what
would be impossible otherwise. Most advanced Monte Carlo is some kind of
variance reduction.

Among the many variance reduction techniques, which may be used in
combination, are control variates, partial integration, systematic sampling, re-
weighting, and importance sampling. The method of control variates is useful
when a crude version of the problem can be solved explicitly. This is often the
case in simple problems (possibly the definition of “simple”) such pricing prob-
lems in quantitative finance where the crude solvable version could be Black
Scholes. Partial integration, also called Rao Blackwellization lowers variance by
replacing integrals over come variables or over parts of space by their averages.
Systematic sampling methods range from the simplest, antithetic variates, to
the slightly more sophisticated stratified sampling, to quasi Monte Carlo inte-
gration. Re-weighting means giving different weight to different samples. They
serve many functions in Monte Carlo, one being to choose weights so that cer-
tain known functions give the exact answer. Importance sampling has appeared
already as sampling with a weight function. It also is the basis of reweight-
ing and score function strategies for sensitivity analysis. Methods for rare event
sampling mostly use importance functions, often suggested by the mathematical
theory of large deviations.

2 Control variates

Suppose X is a random variable and that we want to evaluate

A = E[V (X)] .

We may estimate A by generating L independent samples of X and taking

Â =
1
L

L∑
k=1

V (Xk) . (1)
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The error is of the order of

Â−A ∼ σV√
L

, σ2
V = E

[
(V (X)−A)2

]
.

Thus, the number of samples and the run time needed to achieve a given accu-
racy is inversely proportional to the variance.

A control variate is an easily evaluated random variable, W (X), so that
B = E[W (X)] is known. If W (X) is correlated with V (X) with covariance

CVW = cov(V,W ) = E [(V −A)(W −B)] ,

then the random variable,

Z = V (X)− α (W (X)−B) , (2)

can have less variance than V (X). This will make the control variate estimator

Â =
1
L

L∑
k=1

(V (Xk)− αW (Xk)) + αB (3)

more accurate than the simple one (1), often dramatically so.
We choose α to minimize the variance of Z in (2). The variance is

σ2
Z = σ2

V − 2αCVW + α2σ2
W .

The optimal α is

α∗ =
CVW
σ2
W

, (4)

and the corresponding optimal variance is

σ2
Z = σ2

V −
C2
CW

σ2
W

= σ2
V

(
1− ρ2

VW

)
, (5)

in terms of the correlation coefficient

ρVW = corr(V,W ) =
CVW
σV σW

.

Thus, the quality of W as a control variate depends on the correlation between
V and W .

In practice it is not likely that one would know the optimal α (4) in advance,
but it can be estimated from Monte Carlo data. From the samples Xk we can
evaluate Vk = V (Xk) and Wk = W (Xk), then

σ̂2
W =

1
L

L∑
k=1

(Wk −B)2 ,

Â(1) =
1
L

L∑
k=1

Vk (simple estimator of A),
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ĈVW =
1
L

L∑
k=1

(
Vk − Â(1)

)
(Wk −B) ,

α̂∗ =
ĈVW

σ̂2
W

, (6)

Â = Â(1) − α̂∗ 1
L

L∑
k=1

(Wk −B) .

The estimate (6) may not be a very accurate estimate of (4), but the perfomance
does not depend strongly on α when α is close α∗, where the derivative is zero.

One can use more than one control variate. Given W1(X), . . ., Wn(X) with
Bl = E[Wl(X)] known, we can form

Z = V (X)−
n∑
l=1

αl (Wl(X)−Bl) . (7)

The optimal coefficients, the αl that minimize var(Z), are found by solving the
system of linear equations

cov(V,Wl) =
n∑
l=1

cov(Wl,Wm)αm . (8)

Should the coefficients in (8) be unknown, we can estimate them from Monte
Carlo data as above.

Let VS denote the control variate sum on the right of (7) so that V =
Z + VS . The optimality conditions for the coefficients αl imply that VS is
uncorrelated with Z. If this were not so, we could use W = VS as an additional
control variate and further reduce the variance. Because they are uncorrelated,
var(V ) = var(Z) + var(VS). In statisticians’ terminology, the total variance of
V is the sum of the explained part, var(VS), and the unexplained part, var(Z).

Linear algebra has a geometrical way to express this. Given a random
variable, X, there is a vector space consisting of mean zero functions of X
with finite variance. If V (X) − A and W (X) − B are two such, their in-
ner product is 〈V − A,W − B〉 = cov(V,W ). The corresponding length is
‖V ‖2 = 〈V − A, V − A〉 = var(V ). In the vector space is the subspace, S,
spanned by the vectors Wl(X) − Bl. Minimizing var(Z) in (7) is the same as
finding the VS ∈ S that minimizes ‖V − VS‖2. This is the element of VS closest
to V −A. In this way we write V = Z + VS with VS perpendicular to Z.
Example: From the introduction. Let B ⊂ R3 be the unit ball of points with
|x| ≤ 1. Suppose X and Y are independent and uniformly distibuted in B and
try to evaluate

E

[
e−λ|X−Y |

|X − Y |

]
.

Since the functional V (X,Y ) = e−λ|X−Y |

|X−Y | depends on |X − Y |, we seek control
variates that have this dependence, the difficulty being finding functionals whose
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expected value is known. One possibility is W1(X,Y ) = |X − Y |2 with

E [W1] = E
[
|X|2

]
+ 2E [〈X,Y 〉] + E

[
|Y |2

]
.

The middle term on the right vanishes because X and Y are independent. The
other two each are equal to 3

5 , so E[W1] = 6
5 . With λ = .2, the improvement

takes us from var(V ) ≈ .99 to var(Z) ≈ .72, about 26% lower. Another possi-
bility is W2 = |X − Y |4 with E [W2] = 6

7 + 6
5 . Using these two control variates

together gives var(Z) ≈ .58, an almost 50% reduction. The Matlab program
that does this, CV1.m, is posted.

This example shows a relatively modest variance reduction from two not very
insightful control variates. Variance reduction methods that seem impressive
in one dimensional examples may become less effective in higher dimensional
problems, as this relatively modest six dimensional problem illustrates.

3 Partial averaging

Partial averaging1, or Rao-Blackwellization, reduces variance by averaging over
some of the variables or over part of the integration domain. for example, sup-
pose (X,Y ) is a random variable wtih probability density f(x, y). Let V (X,Y )
be a random variable and

Ṽ (x) = E [V (X,Y ) | x] =
∫
V (x, y)f(x, y)dy∫

f(x, y)dy
(9)

A simple inequality shows that except in the trivial case where V already was
independent of y,

var(Ṽ ) < var(V ) . (10)

In fact, the reader can check that

var(V ) = var(Ṽ ) + E

[(
V − Ṽ

)2
]
. (11)

The conclusion is that if a problem can be solved partially, if some of the integrals
(9) can be computed explicitly, the remaining problem is easier.

A more abstract and general version of of the partial averaging method is
that if G is a sub σ−algebra and

Ṽ = E [V | G] ,

then we again have (11) and the variance reduction property (10). Of course,
the method still depends on being able to evaluate Ṽ efficiently.

1This has nothing to do with integration by parts. Here, it means integrating over some
but not all of the variables in a multi-dimensional integral.
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Subset averaging is another concrete realization of the partial averaging prin-
ciple. Suppose B is a subset (i.e., an event) and that E [V | B] is known. If

Ṽ (x) =
{
E [V | B] if x ∈ B,
V (x) if x /∈ B,

then again var(V ) < var(Ṽ ) except in trivial situations. For example, we might
take B to be the largest set for which E [V | B] can be evaluated by symmetry.
Example. Consider just the Y integration in the previous example.:

EY

[
e−λ|X−Y |

|X − Y |

]
=

3
4π

∫
|y|≤1

e−λ|x−y|

|x− y|
dy .

For each x, define Bx = {y | |x− y| ≤ 1− |x|}. This is the largest round ball
about x contained in the integration domain |y| ≤ 1. The conditional expecta-
tion

EY [V (x, Y ) | Bx] =
3
4π

∫
y∈Bx

e−λ|x−y|

|x−y| dy

P (Y ∈ Bx)

may be evaluated using radial symmetry. The numerator is

3
4π

∫ 1−|x|

r=0

e−λr

r
4πr2dr = 3

∫ 1−|x|

r=0

e−λrrdr

=
3
λ2

(
1− e−λ(1−|x|) (1 + λ(1− |x|))

)
,

And P (Y ∈ Bx) = (1− |x|))3, so that

EY [V (x, Y ) | Bx]

= u(x) = (1− |x|))−3 3
λ2

(
1− e−λ(1−|x|) (1 + λ(1− |x|))

)
. (12)

Therefore

A = E(X,Y )

[
e−λ|X−Y |

|X − Y |

]
= E(X,Y )

[
Ṽ (X,Y )

]
,

where

Ṽ (X,Y ) =

 e−λ|X−Y |

|X − Y |
if |X − Y | ≥ 1− |X| ,

u(X) if |X − Y | < 1− |X| .

Computational experiments (Matlab script CV3.m posted) with λ = .2 show
that var(Ṽ ) ≈ .61. We may further reduce the variance using the earlier control
variates W1 = |X − Y |2 and W2 = |X − Y |4. Using only W1 gives var(Z) ≈ .35.
Using W1 and W2 together gives var(Z) ≈ .24. Thus, the combined effects of
not very sophisticated partial averaging and two simple control variates reduces
the variance, and the work needed to achieve a given accuracy, by a factor of 4
(from .99 to .24).
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4 Importance sampling

Suppose f(x) is the probability density for the random variable X and that
g(x) is another probability with the property that f(x) = 0 for all x with
g(x) = 0. If is true, we say f is absolutely continuous with respect to g. The
likelihood ratio between f and g is L(x) = f(x)/g(x). It is well defined if f is
absolutely continuous with respect to g. Importance sampling is based on the
simple identity

Ef [V (X)] =
∫
V (x)f(x)dx =

∫
V (x)

f(x)
g(x)

g(x)dx = Eg [V (X)L(X)] . (13)

The variance is reduced if

varg [V (X)L(X)] < varf [V (X)] .

Importance sampling is helpful is cases where V (x) is largest for values of x
that are unlikely in the f probability distribution. Then we seek a g distribution
that puts more weight on the most important (for the expected value of V ) x
values. Of course, it can take some ingenuity to identify the most important x
values and even more to find a simple g that puts it’s probability mass in those
places.

Importance sampling is one approach to the general problem of rare event
simulation. This means estimating the probability of an unlikely event using
Monte Carlo. Applications call for estimating probabilities as large as 5% or
as small as one part in 109. For example, in nuclear reactor shielding, we want
fewer than one neutron out of 109 to succeed in traveling from the reactor core
to where people are. As we will see near (15) below, the accuracy of direct
rare event simulation depends on the number of hits rather than on the number
of trials. A hit is a simulation in which the rare event happens. We hope for
a method that requires fewer than 109 simulations to estimate the rare event
probability.

For a very simple example, let f correspond to the standard normal dis-
tribution, let r be a large number, and ask P (X > r). This is the same as
E[V (X)] where V (x) is the characteristic function 1x>r. Clearly, f puts most
weight near x = 0, while V = 0 there. The probability distribution g = N (r, 1)
puts more mass where V 6= 0. The likelihood ratio is

L(x) = f(x)/g(x) =
1√
2π
e−x

2/2

1√
2π
e−(x−r)2/2 = e−rx+r

2/2 .

Therefore,

A = PN (0,1) [X > r] = er
2/2EN (r,1)

[
1x>r(X) e−rX

]
. (14)

Let us compare the Monte Carlo algorithms corresponding to the two sides of
(14). The right hand side asks us to generate L standard normals, Xk ∼ N (0, 1),
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and count the number of hits, N = # {Xk > r}. The estimate of A is N/L.
The right hand side asks us to generate L independent normals with mean r
and variance one, X̃k ∼ N (r, 1). Approximately half of these will be hits in
the sense that X̃k > r. Each hit is re-weighted with a factor wk = e−rX̃k+r

2/2.
The wk are small for X̃k in the hit region. Indeed, when X̃k > r, we have
−rX̃k − r2/2 < −r2/2 << 0. Therefore, the right hand side estimator,

er
2/2

L

∑
X̃k>r

e−rX̃k ,

estimates A using a large number of very small contributions, rather than a very
small number of order one contributions.

We can make this more quantitative using the idea of relative accuracy. The
absolute error of an estimator is Â−A, while the relative error is

(
Â−A

)
/A.

This is particularly important when A is very small. If A = 10−6, then the
estimate Â = 2 · 10−6 is off by 100%, although that is only 10−6 in absolute
terms. In the present example, random variables Y1 = 1x>r(X), X ∼ N (0, 1),
and Y2 = er

2/21x>r(X)e−rX , X ∼ N (r, 1). Corresponding to these are the two
estimators

Âj =
1
L

L∑
k=1

Yj,k .

We will find the natural condition that implies that the naive estimator Â1 has
some relative accuracy and see how much better the importance sampling Â2

is.
The random variable Y1 is Bernoulli, and has (using the approximate formula

from the next section)

p = P (Y1 = 1) = A ≈ 1√
2πr

e−r
2/2 .

The variance of a Bernoulli is p(1 − p) ≈ p (the last for small p). The relative
accuracy measured by the standard deviation of the estimator normalized by
the exact answer

σ
(
Ã1

)
A

=
σ (Y1)√
LA

≈ 1√
Lp

. (15)

This result simply says that the relative accuracy of the naive estimator is
determined by the Lp, which is the expected number of hits in L trials. The
relative accuracy depends on the (expected) number of hits, not the number of
samples.

By contrast, we calculate (using approximate integration as below) that

E
[
Y 2

2

]
= er

2 1√
2π

∫ ∞
r

e−2rxe−(x−r)2/2 ≈ e−r
2 1√

2π
1
2r

.
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Since E[Y2] = A, this leads to (getting A2 from (17))

var[Y2] ≈ e−r
2
(

1√
2π

1
2r
− 1

2π
1
r2

)
≈ e−r

2 1√
2π

1
2r

.

Thus, we have relative accuracy

σ
(
Â2

)
√
LA

≈ (2π)1/4
√
r

L
. (16)

Although both the naive and the importance sampling methods have relative
error that grows with r, the naive estimator (15) has a factor 1/

√
p ∼ er

2/4,
which grows exponentially with r, while importance sampling (16) has relative
error that grows only like

√
r. A more sophisticated method can remove even

the
√
r growth.

4.1 Approximate integration I

If an integral depends on a parameter, it may be possible to find the approximate
value of the integral when the parameter is large or small. One simple way
this happens is that most of the mass of the integral becomes concentrated in
small sets. The integral approximation them comes from approximations to the
integrand that are valid where the mass is.

A simple example is

A(r) = PN (0,1)(X > r) =
1√
2π

∫ ∞
x=r

e−x
2/2dx ,

when r is large. Of course, all the mass in this integral is from x > r, but for
large r, most of the mass is very close to x = r. This is because x2/2 is rapidly
increasing at x = r if r is large, which in turn makes e−x

2/2 rapidly decreasing.
Informally, there are two ranges of x > r, the near field and far field. In the
near field the Taylor approximation, x2/2 ≈ r2/2 + (x− r)r, is valid. In the far
field, x2/2 is so much larger than r2/2, that is makes a negligible contribution
to the integral. In other words, the total integral is almost the same as the near
field integral, which, with the Taylor approximation, gives

A(r) ≈ 1√
2π

∫ ∞
x=r

e−r
2/2−r(x−r)dx =

1√
2πr

e−r
2/2 .

Extending the near field integral out to x = ∞ has a negligible effect on the
answer.

Let us do this example more carefully. With the change of variables x = r+y,
we have x2/2 = r2/2 + ry + y2/2, and

A(r) =
1√
2π
e−r

2/2

∫ ∞
y=0

e−rye−y
2/2dy .
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There is a dichotomy in the integrand on the right side. Either y is small or
ry is so large that the integrand is negligible. In either case (but for different
reasons), we may use the Taylor approximation e−y

2/2 ≈ 1− y2/2 + y4/8− · · ·
to get (after integrating term by term)

A(r) ≈ 1√
2π
e−r

2/2

(
1
r
− 1
r3

+
3
r5

+ · · ·
)
. (17)

An error bound for this case follows from∣∣e−u − (1− u+ u2/2
)∣∣ ≤ Cu3 ,

for u > 0. Putting this in the A(r) integral gives∣∣∣∣A(r)− 1√
2π
e−r

2/2

(
1
r
− 1
r3

+
3
r5

+ · · ·
)∣∣∣∣ ≤ Ce−r

2/2

r7
.

This shows that for large enough r, the error in (17) is smaller than any of the
terms in the approximation.

Note what the error bound did not say. It did not say that the approxima-
tion always improves when you add another term, or that the approximations
converge as the number of terms goes to infinity. Approximations like (17) are
asymptotic approximations2 rather than convergent series. The approximation
with any fixed number of terms improves as r →∞, but for fixed r there is an
optimal number of terms. Adding more makes the approximation worse.

A general case of this involves a phase function φ(x) and an amplitude func-
tion f(x) in the integral

A(r) =
∫ ∞
x=0

f(x)e−rφ(x)dx .

If we suppose that φ and f are smooth functions of x with φ′ ≥ C > 0 for all
x > 0, then for large r the mass of the integral is concentrated about x = 0.
Using the Taylor expansions f(x) ≈ f(0) + xf ′(0) + · · · and φ(x) = φ(0) +
xφ′(0) + 1

2x
2φ′′(0) + · · · gives

A(r) = e−rφ(0)

(
1
r

f(0)
φ′(0)

+
1
r2

f ′(0) + f(0)φ′′(0)
φ′(0)2

+ O

(
1
r3

) )
. (18)

The reader should check that this is consistent with the special case (17).

4.2 Cramer’s theorem

Cramer’s theorem is the first example of what now is called large deviation
theory, which is a general theory that tries to explain how rare events happen.

2This distinction and terminology are due to Poincare. It is discussed at length in many
good books on methods of applied mathematics such as the one by Bender and Orszag.
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The analysis also leads to highly efficient importance sampling methods for this
kind of rare event.

Suppose X is a random variable with density f(x) and expected value µ0.
Let X1, . . . , Xn be n independent samples of f and let Sn = (X1 + · · ·+Xn) /n
be mean of these samples. For large n, we expect Sn ≈ µ0. Cramer’s theorem
asks about the possibility that Sn ≈ µ with µ 6= µ0. Under suitable hypotheses
on f , this is exponentially unlikely, as we (following Cramer) now show.

One derivation of the Cramer result starts from the view that the central
limit theorem is an asymptotic integration method. Suppose g(x) is a proba-
bility density the Xk are an i.i.d. sequence of samples of g, and hn(s) is the
probability density for the mean Sn = (X1 + · · · + Xn)/n. We can express hn
in terms of the delta function as

hn(s) =
∫
x1

· · ·
∫
xn

δ (s− (x1 + · · ·+ xn)/n) g(x1) · · · g(xn) dx1 · · · dxn . (19)

For most values of s this integral is hard to evaluate. However, the central limit
theorem states that for s ≈ µ = Eg[X], hn corresponds to a Gaussian with
mean µ and variance σ2

g(X)/n. That is, hn(s) ≈ 1√
2πσ2

g(X)n
e−(s−µ)2/2σ2

g(X)n.

In particular, setting s = µ gives (writing µg for emphasis)

hn(µg) ≈
1√

2πσ2
gn

. (20)

The rest of the argument is a clever trick that reduces general integrals (19)
to this case using the exponential twist. There will be some motivation for this
below, but for now, the twist is a factor eλx. If f(x) is a probability density,
the exponentially twisted density is

fλ(x) =
1

Z(λ)
eλxf(x) , (21)

where the normalization factor is chosen so that fλ has total mass one:

Z(λ) =
∫
eλxf(x)dx = E

[
eλX

]
. (22)

The Cramer theory depends on the moment generating function, or exponential
moments, (22) being finite, at least for a range of λ. Otherwise, the results are
very different. For example, if Y ∼ N (0, 1) and X is the lognormal X = eY ,
then (22) is (for λ > 0)

E
[
eλe

Y
]

=
1√
2π

∫ ∞
−∞

exp
(
λey − y2/2

)
dy =∞ ,

because λey − y2/2→∞ as y →∞. The Cramer theory does not apply to the
lognormal because lognormal tails are too fat. You can see how stringent the
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requirement of finite exponential moments is by noting that the lognormal has
finite (power) moments of all orders: E [Xn] <∞ for all n.

The exponential twist in Cramer theory is used to move the mean of X from
the true value µ0 to the twisted value

µ(λ) = Eλ [X] =
∫
xfλ(x)dx =

1
Z(λ)

E0

[
XeλX

]
=

1
Z(λ)

∫
xeλxf(x)dx .

(23)
We write λ∗(µ) for the value of λ that achieves that µ in (23) The trick is that
because of the delta function in the integral (19), we have the identity

Zn(λ) e−nλs
eλx1

Z(λ)
· · · e

λxn

Z(λ)
= 1 .

Therefore, for any λ we may rewrite (19) as

hn(s) = Zn(λ) e−nλs
∫
· · ·
∫
δ(· · ·)fλ(x1) · · · fλ(xn)dx1 · · · dxn .

If we choose λ∗(s) then we can apply (20). The result is

hn(s) ≈ 1√
2πnσ2

λ∗(s)

Zn(λ∗(s)) e−nsλ∗(s) . (24)

Much of the interpretation of (24) uses the free energy,3 F (λ) = ln(Z(λ)).
The derivatives of F are (using (22) and (23))

F ′(λ) =
∂λZ(λ)
Z(λ)

=
E
[
XeλX

]
Z(λ)

= Eλ[X] , (25)

and

F ′′(λ) =
∂2
λZ(λ)
Z(λ)

−
(
∂λZ(λ)
Z(λ)

)2

= Eλ
[
X2
]
− (Eλ [X])2 = varλ(X) . (26)

From (26) we learn that F (λ) is strictly convex (unless X is trivial), which
implies that there is a unique λ with s = F ′(λ) = Eλ[X]. Any convex function,
F (λ) has a convex conjugate function (or Legendre transform)

F ∗(s) = min
λ
F (λ)− sλ . (27)

The following facts are easy to verify. If F is strictly convex then the min-
imum in (27), if there is one, is taken at a unique point, λ∗(s). This satisfies
∂sλ∗(s) = 1/F ′′(λ∗(s)) > 0. The conjugate function satisfies ∂sF ∗(s) = λ∗(s)

3The term free energy comes from statistical mechanics, where it refers to the part of the
total energy that can be used for doing mechanical work in a certain way. See a good book
on statistical physics for details.
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and ∂2
sF
∗(s) = ∂sλ∗(s) > 0, so F ∗ also is strictly convex wherever it is defined.

Finally, the relation ∂sF ∗ = λ∗ implies that F ∗∗(λ) = mins F ∗(s)− sλ = F (λ).
Returning to (24), which may be written

hn(s) ≈ 1√
2πnσ2

λ∗(s)

e−n{F (λ∗(s))−sλ∗(s)} .

From what we know about F and F ∗, we recognize this as

hn(s) ≈ 1√
2πnσ2

λ∗(s)

e−nF
∗(s) . (28)

It is a useful exercise for the reader to check that the minimum of F ∗(s) is
attained at s = µ0 = E0[X]. The minimum value is F ∗(µ0) = 0, and ∂sF ∗(µ0) =
0, and, finally, ∂2

sF
∗(µ0) = 1/var(X). Using this in (28) gives, for s ≈ µ0,

hn(s) ≈ 1√
2πnσ2

e−n(s−µ)2/2σ2
,

which is the central limit theorem.
In discussions of the theory of large deviations, one often sees a weaker

version of (28), namely

lim
n→∞

−1
n

ln [hn(s)] = F ∗(s) .

This gives information only about the exponent, not about the algebraic pre-
factor. To be fair, even this information is hard to come by in harder cases. Still,
the pre-factor has a factor of

√
n, so the approximate formula based only on the

exponent, hn ∼ e−nF
∗
, is not accurate in the usual sense. Even though large

deviation “approximations” are not very accurate in themselves, the derivations
often identify the most likely way for the rare events to happen, the exponential
twist in this case. This leads to effective importance sampling strategies.

Let us compare the direct simulation algorithm to an importance sampling
strategy using the exponential twist. We wish to evaluate An(r) = P (Sn > s) for
s > µ0. Integrating the approximation (28) using the approximate integration
method above gives (using ∂sF ∗(s) = λ∗(s))

An(s) ≈ 1√
2πnσ2

λ∗(s)

∫ ∞
s

e−nF
∗(s)ds

≈ n−3/2 1√
2π

1
σλ∗(s)λ∗(s)

e−nF
∗(s) (29)

Of course, this shows that the event is exponentially unlikely and direct simu-
lation will produce few hits.
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