
Dynamic sampling

1 Introduction

Sampling is the central technical step in many Monte Carlo computations. A
simple sampler, as we have seen, is a procedure that produces independent
samples in time on the order of the complexity of the system. There are many
probability distributions for which no simple sampler is known. For example, a
sampler based on rejection for a system with n components easily could have an
acceptance probability on the order of e−Cn. While such a sampler in principle
is “correct” (producing independent samples from the correct distribution), it
is impractical for large n.

For example, suppose X = (X1 < X2 < · · · < Xn) is uniformly distributed
except for the constraints that Xk+1 ≥ Xk+r, X0 ≥ 0, and Xn ≤ Rn (of course
R > r). The Xk could represent the left endpoints of n rods of length r that
are not allowed to overlap but otherwise are completely random. One sampling
idea might be to choose n independent uniformly distributed points in [0, nR],
sort them, then reject if there are any overlaps. It is not hard to see that if we
fix r and R while n→∞, it is exponentially unlikely to have a success.

Dynamic sampling is based on a different idea. Suppose X is an n component
random variable with probability distribution f(x). There may be a way to
perturb X to get a different sample, X ′, that also is from the distribution f .
For example, suppose X is an allowed rod configuration as above. We can
choose a k, fix the Xj for j 6= k (i.e. set X ′j = Xj for j 6= k), and let X ′k be a
uniform random variable in the interval Ik = (Xk−1 + r,Xk+1 − r). We know
that Ik is not empty because Xk ∈ Ik since X was an allowed configuration.
The reader should try to check that if X ∼ f , then X ′ ∼ f . We will verify this
later through the principle of detailed balance.

Starting now and for the rest of this section, we use superscripts to dis-
tinguish samples and subscripts to label components of a sample. Thus, Xk

is component k of configuration X, and Xm is the mth sample configuration,
Xm = (Xm

1 , . . . , X
m
n ). In the rod system, we could start with an initial config-

uration, X0, resample the first component to get X1 with X1
j = X0

j if j > 1
but X1

1 6= X0
0 . After resampling X2, we would get X2 with X2

j = X0
j for j > 2

but X2
1 6= X0

1 and X2
2 6= X0

2 , etc. Eventually, we would get Xn with Xn
k 6= X0

k

for all k. Since the distribution f is preserved at each stage, Xn has the correct
distribution if X0 does.

It is important to recognize that even though every component of Xn is
different from the corresponding component of X0, Xn is not independent of
X0. For example, suppose Xn

n−1 ≤ X0
n. If X0

n � nR (unlikely but possible),
then Xn

n−1 � nR, and X2n
n−2 � nR (assuming we start over after n), etc.

The memory of a dynamic Monte Carlo sampler can extend over not just one,
but many sweeps. One of the main issues in dynamic Monte Carlo is the long
persistence of correlations between samples, measuring it, understanding it, and
reducing it.
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Suppose we are trying to calculate A = Ef [V (X)]. The dynamic Monte
Carlo procedure is to generate a sequence of L samples then apply the estimator

A ≈ ÂL =
1
L

L∑
m=1

V (Xm) . (1)

There are many issues to think about. We need conditions under which ÂL → A
as L → ∞ even though the Xm are not independent. We must be able to do
this even if X0 does not have the f distribution, since the point of dynamic
Monte Carlo is that sampling f is hard. Finally, we need error bars for (1) that
take into account correlation between the samples.

A dynamic sampler is an iteration Xm+1 = Φ(Xm, ξm), where Φ(x, ξ) is
some deterministic function (or procedure) and the ξm are independent random
variables that may be sampled through a simple sampler. The Xm form a
Markov chain and dynamic sampling often is called Markov chain Monte Carlo,
or MCMC. For example, in the rod example above, (with a change of notation),
we get Xm+1 from Xm be resampling each of the Xk once. Then ξmk is the
standard uniform random variable used to resample We say that Φ preserves
f if X ′ = Φ(X, ξ) has X ′ ∼ f if X ∼ f . The basic theory of Markov chains
implies that if Φ preserves f and satisfies certain non-degeneracy conditions,
then the distribution of Xm converges to f as m→∞ and ÂL → A as L→∞.
We outline this theory below.

Next, we give some strategies for designing such functions Φ given f . The
most famous are the Metropolis algorithm and heat bath (also called the Gibbs
sampler). The rod example above is an instance of heat bath. The main ideas
are partial resampling and detailed balance. Sometimes we can find more sophis-
ticated dynamic samplers that have less correlation among the samples. Two
ways to achieve this are expanding the state space (the system with more com-
ponents may have fewer constraints and be easier to sample), and hybridization
(alternating different functions Φ that reduce correlations in different ways.

Dynamic Monte Carlo codes need a way to estimate error bars. These are
determined by the static variance σ2 = varf (V (X)) and the autocorrelation
time, τ . Simple samplers have τ = 1 so only σ2 matters. The autocorrelation
time is a measure of how may applications of Φ (iterations) it takes to produce
an effectively independent sample of f . More precisely, the error bar for simple
sampling,

A = ÂL ±
σ̂√
L
,

is replaced by

A = ÂL ±
σ̂√
L/τ

. (2)

This says that the effective sample size, the effective number of independent
samples, is Leff = L/τ . The penalty for dynamic Monte Carlo is that you have
to increase the run length by a factor of τ longer to get the same statistical error
as you would have from a simple sampler. On the other hand, if the best simple
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sampler is exponentially inefficient, a dynamic sampler, even with a large τ , is
preferable. We will discuss ways to estimate τ for the error bar (2).

There is much work by people in fields ranging from theoretical computer
science to applied mathematics to theoretical physics and statistics estimating
τ and related quantities. Much beautiful mathematics has been developed for
this purpose. We discuss some of that at the end.

2 Theory of Markov chain Monte Carlo

The theory of dynamic samplers is part of the theory of Markov chains. The
general theory of Markov chains is a little technical so we start with the simplest
case, the Markov chain with a finite state space.

The state space will be called S, and states will be denoted by Greek letters,
α ∈ S, etc. If there are s states in all (|S| = s), then the transition matrix is
an s × s matrix, P , with entries pαβ = P (α → β). Consistent with notation
in the introduction (but inconsistent with that of the rest of the world), write
Xm ∈ S for the state after m steps. The probability distribution of Xm will be
denoted P (Xm = α) = f(α,m). Writing fm for the n component row vector
with components f(α,m), we have the forward equation fm+1 = fmP .

We are looking for criteria under which a Markov chain forgets its initial
state. One necessary condition is that it should be possible, eventually, to get
from any state to any other. A transition α → β is possible if pαβ 6= 0. A
possible path of length k + 1 from α to β is a sequence of states γj ∈ S, for
j = 0, . . . , k, with γ0 = α and γk = β so that each of the transitions γj → γj+1

is possible. If X0 = γ0, then the probability that Xk = γk for k = 1, 2, . . . , k
is non zero if and only if γ is possible. A Markov chain is called irreducible or
indecomposable if for every pair α ∈ S and β ∈ S, there is a possible path of
some length (which may depend on α and β) from α to β.

Periodicity is another form of long term memory. State α has period r if
every possible path from α to α has a length that is a multiple of r. If state
α ∈ S has a period greater than one, then some memory of the initial state
persists for ever. If X0 = α and m is not a multiple of r, then it is impossible to
have Xm = α. For example, suppose the state X = (X1, · · · , Xn) is a sequence
of spins that take possible values Xk = +1 or Xk = −1 (called spin up and spin
down respectively) only. Then the number of states is s = |S| = 2n. Suppose
one step in the Markov chain chooses a site, k at random (each site equally
likely, all choices independent), and flips the spin (X ′k = −Xk). For this chain,
every state has period 2 because the parity (even or odd) of the number of up
spins changes each step. The Markov chain is aperiodic if every state has period
r = 1.

A row vector is a probability vector if none of its components is negative and
the components sum to one. The fundamental theorem of Markov chains states
that if the chain is aperiodic and irreducible, then there is a unique probability
row vector, f , so that

f = fP . (3)
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We say that f is the invariant or steady state1 probability distribution for P .
Moreover, if f0 is any probability vector and fm+1 = fmP for all m > 0, then
fm → f as m → ∞. For Monte Carlo applications we say it like this. We
want to sample a distribution, f . We construct a Markov chain that has f
as an invariant distribution. If that Markov chain is irreducible and aperiodic,
then no matter how we choose X0, the distribution of Xm will converge to f as
m→∞.

This theorem sometimes is called the Perron Frobenius theorem because
of a generalization due to Perron and Frobenius. They studied the eigenvalue
problem for matrices, A, (like P ) with all nonnegative entries. They proved that
if A is aperiodic and irreducible and λ is the eigenvalue of A with maximum
modulus (|λ| = max), then λ is a positive real number and a simple eigenvalue
(one dimensional eigenspace, no Jordan blocks). We give a proof here that
works for Markov chain transition matrices only. The more general theorem
(see, e.g. Matrix Theory by Gantmacher) is not more difficult, but is not
stated in probabilistic terms.

We give a proof that relies on duality theory of the matrix eigenvalue prob-
lem. If λ1 is an eigenvalue of P , then there is a right eigenvector, v, with
Pv = λ1v. If λ2 6= λ1 is another eigenvalue ant g is a left eigenvector (gP = λ2g),
then gv = 0. In the present case, the column vector v = 1, whose entries are
vα = 1 for all α, satisfies Pv = v because

∑
β pαβ = 1 for all α. Therefore, there

is a left eigenvector, f , with fP = f . If the entries of f all have the same sign,
we may assume (flipping the sign if necessary) that they all are non-negative
and that

∑
α fα = 1. This shows that any Markov chain with a finite state

space has at least one invariant probability distribution.
To show that the invariant distribution is unique and stable, we need to use

the hypotheses that P is aperiodic and irreducible. One of the several ways to
do this is to examine a left eigenvector gP = λg with λ 6= 1 and show that
gPm → 0 as m → ∞. This would imply that there are no eigenvalues λ 6= 1
with |λ| ≥ 1. For a finite state space, it implies further that there is a positive
spectral gap2, ρ > 0, with

max
λ6=1
|λ| = 1− ρ .

The main idea is to find cancellation in the sum that computes3 gm = gPm,
which cancellation implies that∑

α

|gmα | <
∑
α

|gα| .

If gP = λg, this forces |λ| < 1, which is the conclusion we are looking for. The
first step is to show that entries of g have different signs. That is simply because

1Physical scientists reserve the term equilibrium for steady states that satisfy detailed
balance, see below.

2The set of eigenvalues of a matrix or operator are called the spectrum of that matrix
or operator. There are eigenvalue problems in quantum mechanics that predict the colors
materials will glow when heated (iron red, copper green, etc).

3Note the conflict of notation. On the left gm is iterate m of the recurrence relation
gk+1 = gkP . On the right P m is the matrix P to the power m.
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g1 =
∑
α gα = 0. Next, note that

|gmα | =

∣∣∣∣∣∣
∑
β

gβp
m
βα

∣∣∣∣∣∣ ≤
∑
β

|gβ |
∣∣pmβα∣∣ . (4)

Now Pm is a Markov chain transition matrix, so
∣∣∣pmβα∣∣∣ = pmβα and

∑
α p

m
βα = 1

(for all β). Therefore

‖gm‖L1 =
∑
α

|gmα | ≤
∑
α

∑
β

|gβ | pmβα =
∑
β

|gβ | = ‖g‖L1 . (5)

The inequality (5) will be strict if any of the inequalities (4) is strict. If there is
equality in (4) for each α, then for each α, all the terms in the sum

∑
β gβp

m
βα

must have the same sign, either all positive or all negative. By hypothesis, we
can find β with gβ > 0 and γ with gγ < 0. So, the conclusion follows from the
Lemma. If P is aperiodic and irreducible then for any α, β, and γ there is an
m > 0 so that pmβα > 0 and pmγα > 0.
Proof. The statement pmβα > 0 is equivalent to the statement that there is a
possible path of length m from β to α. We must show that there is an m so
that there are possible paths both of length m from β and γ to α. Since P is
irreducible, there is a possible path of some length from β to α and one from γ
to α. Therefore, the lemma follows from the statement that for any α there is
a k so that if l ≥ k there is a path of length l from α to α. This is equivalent to
the statement that plαα > 0 for all l ≥ k.

This is an elementary fact about numbers. If there is a path of length l1 and
one of length l2 (both from α to α), then there is a path of length l1 + l2 (do
one path then the other). This completes the proof of the lemma.

This discussion is closed by noting that it shows that f with fP = f (the
dual eigenvector to v = 1 with Pv = v) has all entries of the same sign. Indeed,
if there are entries of f with both signs, then there must be cancellation in (4).

Now, let f0(α) = Pr(X(0) = α) be arbitrary and run the chain. If fm(α) =
Pr(X(m) = α), then fm = f0Pm, as before. The large time behavior of fm

may be studied using the eigenvector decomposition of f0, which takes the form

f0 = a1f +
s∑
j=2

ajgj ,

where the gj are eigenvectors (gjP = λjgj) or generalized Jordan block vectors
corresponding to eigenvalues with |λj | ≤ 1 − ρ. The coefficients aj are found
using the normalized dual eigenvectors, vj with Pvj = λjvj (or generalized
eigenvectors), aj = f0vj . This implies that a1 = f01 =

∑
α f

0
α = 1. Setting

a1 = 1 above gives

fm = f +
s∑
j=2

ajλ
m
j gj = f + O ((1− ρ)m) .
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This implies that the distribution of X(m) converges exponentially to the in-
variant steady state distribution, f . This is the basis of dynamic, or Markov
chain Monte Carlo.

The theory of Markov chains applies also to the case when the state space is
infinite but discrete (countable). The definitions of acyclic and irreducible are
the same. The basic theorem that is important for Monte Carlo still is true as
stated: if the Markov chain preserves the probability distribution f , then the
probability distribution of Xm converges to f as t → ∞. There are two differ-
ences, however. There is no guarantee of a spectral gap and there are examples
where the convergence fm → f is not exponentially fast. Slow convergence for
infinite or very large finite state space systems is a major problem for some
dynamic Monte Carlo algorithms.

The other difference is less important for Monte Carlo: even if the chain is
acyclic and irreducible, there may be no steady state probability distribution. A
Markov chain that has a steady state probability distribution is called positive
recurrent. Suppose we pick α0 ∈ S and let τk be the successive times, m,
for which Xm = α0. These are called recurrence times or renewal times. It
is a theorem that a Markov chain with a countable state space has a steady
state probability distribution if and only if the expected return time is finite:
E [τk+1 | Fτk

] < ∞. This is the origin of the term positive recurrence. The
other possibilities are that the expected value of, for example, τ1 is infinite
but τ1 itself is finite. This is called null recurrence and ordinary symmetric
random walk on the integers is an example. The other possibility is that there
is a positive probability never to return to α0. This is called transience, and
biased random walk on the integers (say left with probability 2/3 and right
with probability 1/3) is an example. The possibilities are very important in
the theory of Markov chains, but less important for dynamic samplers, since we
usually design a Markov chain to preserve a given distribution.

The theory of Markov chains on continuous state spaces is more subtle. The
simplest case to describe is when the distribution of y = Xm+1 given x = Xm

is given by a conditional probability density, p(x, y. If fm(x) is the probability
density for Xm,then fm+1(x) =

∫
fm(y)p(y, x)dy. In keeping with our notation

for matrices, we write this as fm+1 = fmP . Putting the vector fm on the left
of the integral operator P means that we integrate with respect to the first
argument of P . The balance condition for a steady state probability density is
f = fP as before.

More generally, it may be that the conditional distribution of Xm+1 given
Xm is singular and given by a probability measure rather than a density. That
is, for each x there is a probability measure, written p(x, dy) (or something like
that) so that if f(dx) is the probability measure describing the distribution of
Xm, then fm+1(dy) =

∫
fm(dx)p(x, dy). There is some mathematical subtlety

in this formula, as the integration is with respect to the probability measure
fm(dx), and the integrand, p(x, dy), is measure valued. For the integral to
make sense, this measure valued function of x must be measurable with respect
to the σ−algebra used for fm.

As an example, consider the rod example with two rods of which only the
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first will move. Call the old positions (x1, x2) and the new positions (y1, y2).
The distribution of y1 is uniform in the interval [1, x2 − r], so its density is

1
x2−r1[0,x2−r](y1). Since y2 = x2, its “density” is δ(y2 − x2) (actually, the
“δ−measure” or “δ−mass” at x2). The overall transition measure is

p(x1, x2, y1, y2) =
1

x2 − r
1[0,x2−r](y1)δ(y2 − x2) . (6)

Integrating with respect to the second variable in the transition density or
transition measure defines a different operator (Pu)(x) =

∫
p(x, y)u(y)dy or

(Pu)(x) =
∫
p(x, dy)u(y). This is the operator that arises in the backward

equation. If we define

um(x) = E
[
V
(
XT
)
| Xm = x

]
,

then the functions um satisfy the recurrence relation um = Pum+1. This is the
same relation that holds for matrices and vectors in the case of a discrete or
finite state space.

3 Detailed balance, Metropolis

Start in the setting of finite state space, S, and a given probability distribution
fα. We want a Markov chain matrix (stochastic matrix), P , that satisfies the
balance condition (3). Of course, this P should be easy to implement. One
way to satisfy the balance conditions is to require them in the stronger form of
detailed balance: for each pair α and β,

fαpαβ = fβpβα (7)

The left side of (7) is the probability, in the steady state, of observing an α→ β
transition: first you must choose α (probability = fα), then you must choose to
make a transition to β (probability = pαβ). Detailed balance is the statement
that in f , the probability of observing a given transition (e.g. α → β) is equal
to the probability of observing the reverse (e.g. β → α).

It is easy to see that detailed balance implies balance, just sum over β in (7)
and use the fact that, for each α,

∑
β pαβ = 1. You get

fα =
∑
β

fβpβα ,

which is the balance condition (3). The relation between balance and detailed
balance might be clearer if we leave out the term β = α on both sides. On the
left we have

fα = fαpαα +
∑
β 6=α

fαpαβ .

On the right we have
fαpαα +

∑
β 6=α

fβpβα .
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The balance condition then becomes∑
β 6=α

fαpαβ =
∑
β 6=α

fβpβα .

The left side is the probability of observing an α → (not α) transition, while
the right is the probability of a (not α)→ α transition. Ordinary balance is the
fact that for each α, the probability of an inbound transition is the same as that
of an outbound transition. Detailed balance is the more restrictive statement
that for every β, the probability of an inbound transition from β is the same as
the probability of an outbound transition to β.

A simple system that has balance but not detailed balance has three states
1, 2, 3 with transition probabilities P (1 → 2) = P (2 → 3) = P (3 → 1) = 3/4
and P (2 → 1) = P (3 → 2) = P (1 → 3) = 1/4, with no other transitions
allowed. The invariant probability distribution is f1 = f2 = f3 = 1/3. This
satisfies f = fP , but the probability of observing 1 → 2 is (1/3) · (3/4) = 1/4
while the probability of the reverse is (1/3) · (1/4) = 1/12.

Physical scientists use the term equilibrium only for system that satisfy de-
tailed balance. Other systems are merely in steady state, or perhaps statistical
steady state to emphasize that the state changes from time to time but the
statistical distribution of states in not changing. Detailed balance is a funda-
mental principle of equilibrium statistical physics. An equilibrium is a system
that has nothing (energy, particles, ...) flowing through it. The distribution of
air molecules in a room would be in equilibrium if the walls of the room would
not conduct heat. The earth is not in equilibrium: It receives energy from the
sun and radiates it into space – a non-equilibrium steady state. Non-equilibrium
systems can be complex in ways that are not allowed for equilibrium systems.
The energy flowing through the earth, being absorbed in one way and radiated
in another, is necessary for the complexity of life.

The Metropolis algorithm uses rejection to enforce detailed balance. A trial
move is proposed. If the move is rejected, then Xm+1 = Xm. We start with
proposal probabilities

Tαβ = Pr
(

propose Xm+1 = β | Xm = α
)

In principle, the Tαβ only need to satisfy Tαβ ≥ 0 (for all α and β) and
∑
β Tαβ =

1 (for all α). In practice, it must be possible to program an efficient sampler
of Tαβ – pick a random β with probability Tαβ . The acceptance probabilities,
Rαβ can be any probabilities 0 ≤ Rαβ ≤ 1. The algorithm is: if Xm = α, first
choose β ∈ S by sampling the probability distribution Tαβ . The accept β with
probability Rαβ . If β is accepted, then Xm+1 = β. Otherwise the proposed
move is rejected and Xm+1 = α. The probability of α→ β is, for α 6= β,

pαβ = TαβRαβ . (8)

If the desired probability distribution, fα, and proposal probabilities Tαβ
are given, it is possible to choose the acceptance probabilities Rαβ to satisfy
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detailed balance. For a given pair α and β, the detailed balance condition (7)
becomes

fαTαβRαβ = fβTβαRβα ,

which implies that
Rαβ
Rβα

=
fβTβα
fαTαβ

. (9)

This single condition does not determine the two numbers Rαβ and Rβα com-
pletely. We can multiply both by the same factor and preserve (9). The
Metropolis idea is to choose that factor as large as possible so that rejection
is as unlikely as possible. That says that max

(
Rαβ , Rβα

)
= 1. This is achieved

by

Rαβ = min
(
fβTβα
fαTαβ

, 1
)
. (10)

For example, if
fβTβα
fαTαβ

≤ 1 ,

then
Rαβ =

fβTβα
fαTαβ

and Rβα = 1 ,

so (10) is satisfied.
The version of Metropolis just described is due to Hastings and often is

called Metropolis–Hastings. The original Metropolis (which more properly is
called MR2T2 for Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller) was a
special case and was described differently. Suppose H(α) represents the energy
of state α (any function can be an energy function). The Gibbs– Boltzmann
probability distribution for temperature T is

fα =
1
Z
e−H(α)/kT . (11)

Here k is Boltzmann’s constant, which is a conversion factor from temperature
(in degrees) to some units of energy.

The probability distribution (11) says that the probability of configuration α
is depends on the energy of that configuration. Configurations with less energy
are more likely. How much more likely depends on the temperature. For large
T there is less penalty for large H(α), but for low temperature (small T ) low
energy states are more strongly preferred. For example, the minimum energy
configuration of a collection of atoms may be a regular crystal. For low tem-
perature, only approximately crystalline states have significant probability. At
higher temperature, a greater variety of configurations are likely, which corre-
spond to disordered liquid or gas states.

The normalization constant, Z(T ), is the partition function. In typical phys-
ical applications, the energy function and temperature are known, but the par-
tition function is not. One of the challenges of sampling (11) is that Z is not
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known. The Metropolis version had (unnecessarily) Tαβ = Tβα In this case, the
ratio in (10) is

fβ
fα

= e−(H(β)−H(α))/kT = e−∆H/kT .

The Metropolis version of the rejection algorithm, then, is: first choose β using
probabilities Tαβ , then compute the energy difference ∆H = H(β) − H(α).
If ∆H < 0, the new state (β) is more likely than the old state – accept the
move and take Xm+1 = β. If ∆H > 0, the new state is less likely. Accept it
with probability e−∆H/kT . None of these computations require us to know the
partition function.

As an example, suppose S = Z (the integers) and H(α) = α2, so that4

fα = 1
Z e
−α2/kT . Suppose the trial move is to move left or right with probability

half: Tαβ = 1
2 if |α− β| = 1 and Tαβ = 0 otherwise. One step of the Metropolis

algorithm would be to propose Xm+1 = Xm ± 1 (equal probabilities), compute
∆H (which is negative if the proposed move brings X closer to the origin),
accept if ∆H is negative, accept with probability e−∆H/kT if ∆H is negative,
and otherwise take Xm1 = Xm. Although the trial move Markov chain is cyclic
with period 2, the full Markov chain with rejection is acyclic because of the
possibility of rejection.

The efficiency of this method or sampling f is temperature dependent. If T
is small, f is concentrated on small integers and not very many steps of the algo-
rithm can take us from any likely state to any other one. For high temperature,
the distribution of f is broader and more steps may be needed to get from one
somewhat likely state to another. We will give a more quantitative treatment
of this later. While the effectiveness of Metropolis or other samplers usually is
temperature dependent, most samplers have more trouble at low temperature
than at high temperature.

The principle of detailed balance also applied to continuous probability dis-
tributions and densities. Suppose f(x) is a probability density we wish to sam-
ple. The detailed balance condition relative to probability density f is that the
probability density to go from x to y is the same as the density to go from y to
x:

f(x)p(x, y) = f(y)p(y, x) . (12)

Integrating the detailed balance condition with respect to x and using the fact
that

∫
p(y, x)dx = 1 for all y (p is a probability density with respect to its second

argument) gives the balance condition from the detailed balance condition. We
saw that the transition probability kernel for the Ornstein Uhlenbeck process
satisfies detailed balance (12).

It may be unclear how to apply the symmetry condition (12) when the
transition density is replaced by a more general transition probability measure.
For this is may be helpful to use the reformulation of detailed balance as a
symmetry condition of operators, as we did for Ornstein Uhlenbeck. One way to

4Note the conflict of notation. The letter Z represents both the partition function normal-
ization constant and the integers.
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do this is just to multiply the supposed pointwise identity (12) by test functions
u(x) and v(y) and integrate∫ ∫

u(x)f(x)p(x, y)v(y) dxdy =
∫ ∫

u(x)f(y)p(y, x)v(y) dxdy (13)

In case p is a measure as a function of y, the dy parts of these integrals are with
respect to that measure.

As for the Ornstein Uhlenbeck process, detailed balance in general can be
interpreted as the operator determined by p being symmetric (or self-adjoint) in
the weighted L2 inner product, weighted by f . In the discrete case, the weighted
inner product is

〈u, v〉f =
∑
α

uαvαfα .

Let A be an s × s matrix. The adjoint of A in the f weighted inner product,
A∗f , is determined by the requirement that

〈u,Av〉f = 〈A∗fu, v〉f ,

for all u and v. In particular, P is self-adjoint in the f weighted inner product
if

〈u, Pv〉f = 〈Pu, v〉f ,

for all u and v. If this is expressed in components using the summation conven-
tion (e.g. (Pv)α = pαβvβ), the result is

uαpαβvβfα = pαβuβvαfα ,

for any sets of numbers uα and vα. Interchanging the labels α and β on the
right gives

uαvβ (pαβfα) = uαvβ (pβαfβ) .

Since the uα and vβ are arbitrary, this implies that pαβfα = pβαfβ for all α and
β. This is the detailed balance condition (7).

The story is the same for continuous probability. The weighted L2 inner
product is

〈u, v〉f =
∫
u(x)v(x)f(x) dx .

The transition density or transition measure defines an operator through

(Pv)(x) =
∫
p(x, y)v(y) dy ,

in the case of a bona fide probability density and a related expression in case p
is a measure as a function of y. The detailed balance condition is equivalent to
the requirement that

〈u, Pv〉f = 〈Pu, v〉f . (14)

In fact, this is exactly (13).
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4 Partial resampling

Looking for a Markov chain that preserves f is the same as looking for random
moves that leave f invariant. Often the moves change X in a small way, such
as changing only one component of X as in the rod example above. Suppose
Pk changes Xk in some way without changing the other components, such as
uniform resampling of Xk in the rod example. The moves Pk, for different k,
must be combined in some way to create a Markov chain that is irreducible (and
aperiodic). We use the term partial resampling for the strategy of combining a
collection of simple moves to make an effective dynamic sampler.

Suppose we have a collection of moves Pk each of which preserves f (f =
fPk). There are at least two ways to combine the Pk to make an irreducible
Markov chain. One is to do them in some order, say first P1, then P2, and so on.
Since each of these moves preserves f , doing them in order also will preserve f .
This gives a Markov chain with transition matrix P1P2 · · ·Pn. In our notation,
this corresponds to first doing P1 then P2, and so on.

Even if the individual moves satisfy detailed balance, the composite resam-
pler P may not. Mathematically, we can see this by noting that the product of
symmetric matrices need not be symmetric. A simple example is sampling the
set of permutations of three letters, a, b, c, with all permutations being equally
likely. Let P1 interchange the first two. This satisfies detailed balance because

Pr( (X1, X2, X3)→ X2, X1, X3) ) = Pr( (X2, X1, X3)→ (X1, X2, X3) ) .

It also works to have P1 interchange X1 and X2 with a given probability. Let P2

interchange X2 and X3, again possibly with a probability possibly less than one.
Both P1 and P2 have detailed balance, but the composite P1P2 does not. One
could see this by writing the transitions matrices (6 × 6 for the 6 dimensional
state space of all permutations of 3 items). Another way to see is is to note that
under P1P2 the transformation

(a, b, c) P1→ (b, a, c) P2→ (b, c, a)

is possible, but the reverse, (b, c, a) → (a, b, c), cannot be achieved first by
interchanging the first pair ((b, a) in this case) then the second pair.

One view of partial resampling is as follows. Suppose X = (X1, . . . , Xn) and
we want to sample the distribution f(x1, . . . , xn). Let

fk(xk | x1, . . . , xk−1, xk+1, . . . , xn) =
f(x1, . . . , xn)

Z(x1, . . . , xk−1, xk+1, . . . , xn)

be the conditional distribution of Xk with all other components fixed. If X is a
sample of f and X ′k is a sample of

fk(xk | X1, . . . , Xk−1, Xk+1, . . . , Xn) ,

then X ′ = (X1, . . . , Xk−1, X
′
k, Xk+1, . . . , Xn) also is a sample of f .

12



It is not necessary that the new X ′k is independent (or conditionally indepen-
dent given the other components) of Xk. For example, we could resample Xk

using a Metropolis proposal and rejection strategy. This would give a positive
probability that X ′ = Xk.

The terms heat bath or Gibbs sampler are used for partial resampling strate-
gies that give an X ′k that is independent of Xk, of course conditionally given the
values of the Xj for j 6= k. This may seem to be the optimal resampling strategy,
since it introduces the most new randomness. For example, if we would resam-
ple Xk repeatedly using Metropolis, then after many resamplings, we would get
an effectively independent resample, which is what heat bath does in one step.
However, there is a counter-example below to the statement that heat bath is
always better than strategies that make X ′k dependent on Xk. Moreover, the
extra work to go from dependent Metropolis resampling to fully independent
heat bath may not produce gains that justify the cost. If we have just resampled
Xk using Metropolis, should we resample Xk again to get a more independent
resample, or would it do more good to resample Xk+1 instead?

If we have partial resamplers Pk, we must assemble them to create an overall
resampler that is irreducible. One could do the partial resamplings in a specified
order, say, P = P1 · · ·Pn, a strategy called sweeping, or systematic scan. One
also could choose k at random (all choices independent) and perform Pk. This
is called random site updating, or random scan. It has the feature that (if each
k is equally likely)

Prs =
1
n

n∑
k=1

Pk

is self adjoint if each of the individual Pk satisfies detailed balance (This can be
argued directly.).

4.1 Heat bath resampling of Gaussians

It is possible to analyze the heat bath algorithm applied to a multivariate Nor-
mal. It is unlikely that one would actually sample a multivariate normal in
this way, given the alternatives (Choleski for moderate n, multi-grid for very
large n). Still, the analysis gives much insight into the strengths and weaknesses
of partial resampling strategies for other distributions that lack very effective
samplers. In this sense, the Gaussian sampling problem is a model problem.
We study it because we want some insight into how it might work in other
situations.

Suppose X ∈ Rn is Gaussian with probability density f(x) = 1
Z e
−x∗Hx/2

(H symmetric and positive definite). The conditional density of Xk is a one
dimensional Gaussian whose mean and variance are easy to calculate. We will
see that the conditional mean, µk(X1, . . . , Xk−1, Xk+1, Xn), is a linear function
of the other component, while the conditional variance, σ2

k, is independent of
X. This means that we can resample Xk using

X ′k = µk(X1, . . . , Xk−1, Xk+1, Xn) + σkZk , (15)
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where the Zk are independent standard normals.
The formulas for µk and σk may be derived as follows. The Gaussian proba-

bility density may be written out as (using the summation convention, and hjk
for the (j, k) entry of H)

f(x) =
1
Z

exp (−xixjhij/2) .

Within the exponential, the terms that depend on xk are x2
khkk/2, and

∑
j 6=k

xjxkhjk =

∑
j 6=k

xjhjk

xk = lxk

(the factor of 2 disappears since the terms xjxkhjk and xkxjhkj are equal).
Therefore (completing the square)

f(x) = e−lxk−hkkx
2
k/2 × (indep of xk)

= e−hkk(xk+l/hkk)2/2 × (also indep of xk) .

Collecting these calculations gives, σ2
k = 1/hkk and

µk =
−1
hkk

∑
j 6=k

hkjxj

 . (16)

Suppose we sweep through the components doing a heat bath resampling of
each one, starting with Xm = (Xm

1 , . . . , X
m
n ). Resampling X1 gives, using (15)

and (16),

Xm+1
1 =

−1
h11

 n∑
j=2

h1jX
m
j

 +
1√
h11

Zm1 .

When we then resample X2, we use the current configuration, which uses the
new X1 and the old X3, etc. The result is

Xm+1
2 =

−1
h22

h21X
m+1
1 +

n∑
j=3

h2jX
m
j

 +
1√
h22

Zm2 .

In general, we have

Xm+1
k =

−1
hkk

 k−1∑
j=1

hkjX
m+1
j +

n∑
j=k+1

hkjX
m
j

 +
1√
hkk

Zmk . (17)

One complete sweep of the single site (single component) heat bath algorithm
is to apply (17) for k = 1, k = 2, . . ., k = n.
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The result of a complete sweep is that

Xm+1 = AXm + BZm , (18)

for some matrices A and B, with Zm ∈ Rn being independent standard n
component normals. We can see this by noting that all the operations in (17)
are linear in the Xm, Xm+1, and Zm. This linear iteration can be understood
just as we understood the multi-dimensional Ornstein Uhlembeck process, and
they depend entirely on the eigenvalues of A. Not only do they not depend on
the matrix, B, they even do not depend on the distribution of the Zm,

More precisely, let fm(x) be the probability density of Xm. Suppose the
Zm are independent samples of probability density h(z). From (18) we have

fm+1(x) =
∫

δ(x−Ay −Bz)fm(y)h(z) dydz . (19)

As for the general case, we can write this abstractly as fm+1 = fmP . It
is not necessary in this argument to write an explicit formula for transition
probability density p(x, y). Suppose A has n real eigenvalues and corresponding
eigenvectors Avk = µkvk. Let f be the invariant density for (19), so that if
fm = f then fm+1 = f . It is not necessary to assume that f is Gaussian,
though it will be if h is Gaussian. Let α1, . . ., αn be non-negative integers, and
λα = α1µ1 + · · ·+ αnµn. Let

gα(x) =
(
v1 · ∇

)α1 · · ·
(
vn · ∇

)αn
f .

Precisely as for the Ornstein Uhlenbeck process, it is easy to see that these gα
are eigenfunctions (left eigenfunctions) of the operator P , gαP = λαgα, in the
sense that if fm = gα in (19), then

fm+1 = λαgα .

5 Error bars and autocorrelation time

Estimating error bars for (1) is more complicated than in the case of uncorrelated
samples. They have in common the central limit theorem, either the simple one
for independent samples or the more subtle one for Markov chains. In both
cases, the error bar, for large enough L, is determined by the variance of ÂL,
which can be estimated from Monte Carlo data. The difference is that the
straightforward variance estimator for independent samples must be replaced
by something more complicated.

The basic fact is that for large L, the variance of ÂL is given (approximately)
by

var
(
ÂL

)
≈ D

L
,

where D plays the role of σ2(V (X)) for independent samples, and is given by
the Kubo formula

D =
∞∑

t=−∞
covf

(
V (X0), V (Xt)

)
. (20)
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In this formula, we suppose that we start not at time m = 0, but some time in
the distant past. In this way, Xt is defined for all t. An equivalent definition of
the time t covariance function, which is more practical for computing, is

C(t) = lim
m→∞

cov
(
V (Xm), V (Xm+t)

)
.

This limit should exist regardless of the starting conditions and is defined for t
positive or negative. It is clear from this that

C(−t) = C(t) ,

and that
C(0) = varf (V (X) ) .

Therefore, we may write

D = varf (V (X) ) + 2
∞∑
t=1

C(t) .

A final rewrite of (20) involves the correlation function

ρ(t) = corrf
(
V (X0), V (Xt)

)
=

covf
(
V (X0), V (Xt)

)√
varf (V (X0) ) · varf (V (Xt) )

=
C(t)
C(0)

.

Dividing by C(0) gives

D = varf (V (X) ) ·

(
1 + 2

∞∑
t=1

ρ(t)

)
= σ2τ , (21)

where σ2 = varf (V (X) ) is the static variance, and

τ = 1 + 2
∞∑
t=1

ρ(t) , (22)

is the autocorrelation time (more properly, em integrated autocorrelation time).
With all this notation, the dynamic Monte Carlo error bar may be stated

var
(
ÂL

)
≈ σ2

Leff
, Leff =

L

τ
. (23)

This says that the error bar for dynamic Monte Carlo may be understood as
the error bar for static Monte Carlo (independent samples) provided that we
use the effective sample size, Leff, which is the number of dynamic Monte Carlo
steps divided by the integrated autocorrelation time. In other words, we can
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think of τ as the number of dynamic Monte Carlo steps needed to produce an
effectively independent sample.

One simple example is the one dimensional version of the linear Gaussian
iteration (18), Xm+1 = aXm + bZm, with observable V (x) = x. If we start X0

in the invariant distribution, then the formula

Xt = atX0 + at−1bZ0 + · · ·+ bZt−1

makes it clear that

C(t) = Ef
[
XtX0

]
= Ef

[
atX0X0

]
= atσ2 .

Of course, it is necessary that |a| < 1 for the steady state to exist. In that case,
we have

τ = 1 + 2
∞∑
t=1

at = 1 +
2a

1− a
=

1 + a

1− a
. (24)

The bad case, from the point of view of Monte Carlo efficiency, is a = 1 − ε,
which has autocorrelation time τ ≈ 2/ε. The correlation at that time is

ρ(τ) ≈ (1− ε)2/ε ≈ e−2 .

This shows that Xm+τ is not terribly close to being actually independent of
Xm. The correlation coefficient is 1/e2 ≈ .15. The term effectively independent
does not mean nearly independent, but rather that the error bars have about
the same size you would get from that many actually independent samples.

5.1 Estimating τ

From (23) we see that estimating error bars is equivalent to estimating σ2, the
static variance, and τ , the autocorrelation time. The static variance we can get
as before:

σ̂2 =
1
L

L∑
m=1

(
V (Xm)− Â

)2

. (25)

There is no equally satisfactory way to estimate τ . We describe two some-
what unsatisfactory methods and wait for someone to produce something better
(Hello, ... Godot?).

The method of batched means is the simplest and least accurate. This
method divides the time series V (Xm) into r sub-series, or batches, of length
L/r. Batch Bj is the sub-sequence m = (jL/r) + 1, · · · , (j + 1)r/L. The batch
means are

µj =
1
L/r

∑
m∈Bj

V (Xm) . (26)

Of course, the overall mean is the mean of the batch means, (1) is equivalent
to:

ÂL =
1
r

r∑
j=1

µj . (27)
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The idea is that if L/r � τ , then the µj are nearly independent and identically
distributed, independent enough so that the variance in (27) is approximately
(assuming each of the µk has the same variance)

var
(
ÂL

)
≈ 1

r
var (µk) , (28)

with5

var (µk) ≈ 1
r − 1

r∑
j=1

(
µj − ÂL

)2

. (29)

The procedure is: Compute the batch means (26) and the overall mean (27),
then estimate the variance of the batch means using the variance estimator for
independent samples (28) and use this to estimate the variance of the overall
mean (29).

Inaccuracy is one problem with the method of batched means. Its accuracy
depends on r, the number of batches, which can be small. In principle, we might
expect the accuracy of the variance estimate to depend on Leff = L/τ . But we
have to take the batch size L/r � τ to insure the µj are (almost) independent,
so r � Leff, the number of batches is much smaller than the effective sample
size. Being sure of the batch size is another problem. It would be prudent to
combine the estimate (29) with the estimate of the static variance (25) to get a
rudimentary estimate of the autocorrelation time using (23):

τ̂ =
L var

(
ÂL

)
σ̂2

.

If the batch size is too small relative to the estimated autocorrelation time, say
L/r < 5τ̂ , the batch size is too small.

Estimating the covariance function may lead to a more accurate estimate of
τ . A natural estimator is

Ĉ(t) =
1

L− t

T−t∑
m=1

(
V (Xm+t)− Â

)(
V (Xm)− Â

)
. (30)

We then could estimate D using

wrong D̂ = Ĉ(0) + 2
L∑
t=2

Ĉ(t) . wrong

A straightforward but lengthly calculation shows that this is an inconsistent
estimator in the sense that var

(
D̂L

)
6→ 0 as L → ∞. All the Ĉ(t) terms on

the right contribute more noise than signal. For t� τ , C(t) is essentially zero,

5We write r − 1 instead of the customary r in the denominator to emphasize that r may
be so small that the difference between r and r − 1 is significant.
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but the estimate still has statistical error. All these statistical errors add up to
something bigger than the signal in D̂.

The cure, obviously, is to exclude the values of Ĉ(t) for t � τ . We replace
the inconsistent estimator with

D̂ = Ĉ(0) + 2
T∑
t=2

Ĉ(t) , (31)

where T is chosen to balance the bias from taking T small against the statistical
error from taking T large. An ideal value for applications might be T ≈ 3τ . Of
course, τ itself must be estimated, probably by

τ̂ =
D̂

σ̂2
.

Using T < L is called windowing, or smoothing. Taking the window size, T , to
depend on the estimate of τ makes the procedure self consistent. You want the
cutoff, T , in (31) to be related to the time scale of the time series V (Xm), but
you do not know that time scale in advance. Therefore, you estimate τ and D
at the same time and stop when the cutoff time used to estimate D is consistent
(self consistent) with the time scale, τ , implied by D̂.

The term smoothing comes from a more general problem that D estimation
is a special case of, spectral density estimation. A time series, Y m (defined for
all integers, m) is stationary if the statistics of Y are the same as the statistics
of a shifted sequence Ỹ m = Y m+t. The time series Y m = V (Xm) is supposed
to become stationary after several autocorrelation times. Assuming E[Y m] = 0
(like V (Xm)−A, for large m), the auto-covariance function is CY (t) = E[V 0Y t].
The spectral density is the discrete Fourier transform6 of the auto-covariance
function:

F (k) =
∞∑

t=−∞
e−iktC(t) . (32)

The Kubo constant is a particular value: D = F (0). Spectral density estimation
is the problem if estimating the spectral density from a length L piece of the Y
sequence. As discussed for D, the naive estimate that uses every available value
of Ĉ(t)

F̂0(k) =
L∑

t=−L
Ĉ(t) , (33)

in (32) is an inconsistent estimator.
Of one plots F̂0(k), the striking thing is how noisy it is. It changes completely

from one k value to the next. This motivates the attempt to improve the
estimate through smoothing as we did in kernel density estimation. If φ(k) is

6You can skip this paragraph if you are not familiar with the discrete Fourier transform or
FFT.
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a smooth localized mollifier, then the approximate identity is φε(k) = 1
εφ(k/ε),

and the smoothed estimator is

F̂ε =
∫ π

k=−π
F̂0(k − l)φε(l) dl (34)

Increasing ε in(34) gives more averaging together with more bias coming from
the fact that

F (k) 6= Fε(k) =
∫ π

k=−π
F (k − l)φε(l) dl ,

although the error is small if ε is small and φ satisfies moment conditions.
The relation to windowing comes from considering the Fourier transform of

φε, which means the numbers

wε(t) =
1

2π

∫ π

−π
eiktφε(k) dk .

The Plancharel formula for Fourier series implies that

Fε(k) =
∞∑
−∞

e−iktwε(t)C(t) .

In particular,

D ≈ Fε(0) =
∞∑
−∞

wε(t)C(t) .

If wε(t) is real and symmetric (it should be the resulting estimator is

D̂ = σ̂2 + 2
L∑
t=1

wε(t)Ĉ(t) . (35)

This is a generalization of the simple windowed estimator (31), as we see by
taking wε(t) = 1 for t ≤ T and wε(t) = 0 for t > T . Other window functions,
w(t), besides the step function window (31) might be more accurate. This is a
topic that could use further research.
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