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Random Simulation

Simulation is way to learn the consequences of models that cannot be solved
analytically. Very few models can be solved analytically, so simulation is part
of most modeling and analysis, in all fields. If the model involves random vari-
ables, then the simulation must generate and use computer generated random
numbers. The result of one random simulation is not the same as the next. It
takes many simulations to build a picture of the model. The output of a random
simulation is one or more random numbers. It takes many simulations to build
a picture of the probability distribution of the output.

Random number generator

A pseudo-random number generatoris an algorithm that produces numbers that
look random. The numbers are not actually random. You get the same sequence
every time you run the algorithm, if you use the same seed. The (pseudo)-
random number generator has a state, s, which is an array of integers. To
get the next “random” number in the sequence, the random number generator
updates the state, producing a new state that depends on the old state in some
complicated way that simulates randomness (without being random). The next
(pseudo)-random number is some function of the state.

s = [some algorithm] (s) # update the state

[some formula](s) # produce a (pseudo)-random number

If you don’t do anything, the starting state comes from some information that
is likely to be roughly random — typically the current second or millisecond from
the computer’s internal clock. The R function set.seed(number) generates a
state, s from the given number. This makes it possible to repeat a pseudo-
random number sequence. This is particularly helpful for debugging (finding
and fixing mistakes in a script). If your algorithm does something wrong in
some case, you want to be able to repeat that case to figure out what is going
wrong,.

R has a number of random number generators, for different probability distri-
butions and situations. The function rnorm(n) produces n independent random
variables with the standard normal density, which is Gaussian with mean zero
and variance 1. The density is
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The numbers are not actually random (as was said above), they’re not indepen-
dent and they don’t exactly have the normal distribution p(z). But you need a
PhD in random number generators to know how to detect the difference (if you



use the Mersenne twister, which R always uses unless you tell it not to). Here is
the random number generator in action, at the command line in the R console:

> rnorm(4)

[1] -0.8172679 0.7720908 -0.1656119 0.9728744

> rnorm(4)

[1] 1.7165340 0.2552370 0.3665811 1.1807892

> set.seed(17)

> rnorm(4)

[1] -1.01500872 -0.07963674 -0.23298702 -0.81726793
> rnorm(4)

[1] 0.7720908 -0.1656119 0.9728744 1.7165340

> set.seed(17)

> rnorm(4)

[1] -1.01500872 -0.07963674 —0.23298702 -0.81726793
> rnorm(4)

[1] 0.7720908 -0.1656119 0.9728744 1.7165340

First we ask for a sequence of length 4. The numbers look OK (about as many
positive as negative, on the order of 1). Next we ask for another sequence. The
second 4 look good too. Now we use set.seed() to specify the state of the
random number generator. The next 4 standard normals look good, as does the
sequence after it. Then we reset the state using the same seed, 17. This makes
the random number generator produce the same sequence.

There are many distributions built into R. The uniform distribution is used
in many applications. The probability density is
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A uniform random variable is equally likely to be anywhere in the interval
[0,1] and is never outside that interval. The R command runif (n) returns n
independent uniform numbers. Figure [I] shows what happened when I asked R
for 30 independent uniformly distributed numbers, at the command prompt in
the console:

[19] ©.56331137 0.24699811
> runif(30)

[1] ©.73432757 0.70365677 0.73682406 0.80186265 @.75207300 0.63377903 0.24760893 0.55133933 0.23476108
[10] 0.25861469 0.95288810 0.85687457 0.27566924 0.55452418 0.87694381 0.11880538 0.54673734 0.23275320
[19] 0.60226778 0.71253911 0.64890360 0.18756242 0.23839289 0.07038709 0.11948412 0.61811947 0.16848571
[28] ©.14597753 0.18971358 @.57549452
>

Figure 1: Asking R for 30 uniformly distributed random variables.

The numbers are all between 0 and 1, and seem like they might be uniformly
distributed. The figure also explains what the [1] means when R returns a value
at the console window. It’s the first element of a list. The second line of the
output starts with element 10 (count them). The third line starts with element
19.



Uniform random variables (supplied by runif () are used in simulating ran-
dom processes that involve decisions. For example, in the binomial tree process
S — uS with probability p, and S — dS with probability py. If U is a random
variable uniformly distributed in [0, 1], then

Pr(U < pu) = pu - (1)

A Bernoullirandom variable has only two possible values (TRUE or FALSE, 0 or 1,
uS or dS), determined by a probability p. Here is an implementation in R. The
random variable B will have the value TRUE with probability p and the value
FALSE with the complementary probability 1 —p. Note that runif (n returns an
array of length n. R treats an array of length 1 as a number. That’s why you
can test U <= p instead of the more complicated but more correct U[1] <= p.
If you make U = runif(2) and then test ( U <= p ), you will get a warning.
R (like most languages) has an if, else command:

if (...) {
[ some commands ]
} else {
[ other commands ]
}

If the condition (...) is TRUE, then it executes the commands in the first code
block ([ some commands ]). If the condition is FALSE, then it executes the
other code block ([ other commands J).

U = runif (1)
if (U<=p) Ao
X =1
} elseq{
X=0
}

This will make X = 1 with probability p, and X = 0 with probability 1 — p.
You can do this with the R function rbinom (for binomial), but this form will
be more convenient.

Simulating a random process

A random process (also called stochastic process) is a sequence of steps (a pro-
cess) that are random. The binomial tree process is an example. Let Sy be the
stock price after k time periods. The starting price Sy is given but the prices
S1, Sz, ... are random. The random “evolution” of the process is given by the
binomial tree model

g | uSk  with probability p, (2)
k1= dS,  with probability pg =1 — p, .



The sequence of prices Sy, S1, ..., Sy is a random path. One simulation of the
process (2) creates one random path. Many simulations create many different
random paths.

Figure [2]is an R script that makes a random binomial tree path. Lines 3 to
6 give the parameters of the binomial tree. Line 7 sets the starting price. Line
10 is part of an old programmer’s trick/habit. At each step k (starting at line
11), there will be an old price, which is S;_1. The new price created will be Sj.
The first trip through the loop, we will have k = 1, so Sgiq = Sk—1 = Sp. Line
10 sets that up. Lines 12 through 17 take one binomial tree step, using the logic
given above. Line 18 records this step of the path. Line 19 gets ready for the
next trip through the loop. The price that is new in this trip will be old in the
next trip. Lines 22 and 23 create a formatted output line.

[ JON ) .+ randDemo.R
1 # Simulate a random binomial tree path

2

3 n=10

4 u=1.1

5 d=.9

6 p_u=.6

7 SO = 100 # starting price

8 S =1:n # allocate an array for the price path
9

5

S_0ld = S@ # S_Old is the price at the previous time, initialized to SO
v for ( k in 1:n){
U = runif(l) # note, u and U are different
v if CU<pou) {

w o S

114 S_New = u*S_0ld # S -> uS with probability p_u
T1s } else {
16 S_New = d*S_Old # S -> dS with probability p_d = 1-p_u
17 A }
18 S[k] = S_New # record the next step in the path
19 S_0ld = S_New # what was new will be old in the next ...
20 # ... trip through the loop
21 A}
22 output = sprintf("Final price is %8.2f",S_0ld)
23 cat(output)

Figure 2: A script to make a random binomial tree path.

Figure (3| shows what happens when you run this script a few times. The
result is random, it can be different every time. There are finitely many possible
outcomes in a binomial tree of length n (is it n or n+17), so you expect repeats
eventually. It may be surprising that S,, = 116.23 is repeated three times in just
9 trials, and two other values are repeated twice. Using probability theory (see
Assignment 5), you can see that some outcomes are more likely than others.



{> source("randDemo.R")
Final price is 95.10
> source("randDemo.R")
Final price is 77.81
> source("randDemo.R")
Final price is 116.23
> source("randDemo.R")

! Final price is 116.23

> source("randDemo.R")

Final price is 116.23

> source("randDemo.R")

(Final price is 142.06

|> source("randDemo.R")

(Final price is 173.63
> source("randDemo.R")
Final price is 142.06
> source("randDemo.R")
Final price is 95.10
>

|
1
|
|

Figure 3: A script to make a random binomial tree path.

Figure [ is an R function using the code from Figure [2] that generates and
returns a path. The function is defined on lines 5 to 9. It is a nice coding style
(I feel) to put each argument on its own line with its own comment. Lines 11
to 15 calculate the parameters of the binomial tree from the parameters of the
problem. The formulas are from class.

[ JON J |+] binPath.R
1 # Function to simulate a binomial tree path
2 # Return an array of length n+l that includes S@ and...
3 # ... n random path steps
4
| s binPath = function( n, # the number of random steps
6 mu, # the expected return, in percent/year
7 sig, # the vol, in percent/year
8 So, # the starting price
9Y ™ { # simulate up to this time
10
1 dt = T/n
12 u =1 + sig*sqrt(dt)
13 d =1 - sig*sqrt(dt)
14 pu = ( 1 + ( mu*sqrt(dt)/sig) ) /2 # formula from class
15 pd = ( 1 - ( mu*sqrt(dt)/sig) ) /2
16
17 S_path = 1:(n+l) # initialize a path of length n+l
18 S_path[1] = S@ # the first value is the starting value
19 # make the path
20 S_0ld = S0
217 for C( k in 1:n){
22 U = runif(l) # note, u and U are different
23 ¥ if (U<pou) {
24 S_New = u*S_01ld # S -> uS with probability p_u
25 } else {
26 S_New = d*S_01d # S -> dS with probability p_d = 1-p_u
27 A }
28 S_path[k+1] = S_New # record the next step in the path
29 S_0ld = S_New # what was new will be old in the next ..
30 # ... trip through the loop
31 A
132 return( S_path )
33 4}

Figure 4: A script to make a random binomial tree path.



Figure [5| shows how to play with this function from the command line. The
parameters are typical. The unformatted output is hard to read — don’t do it
this way. Each of the five paths starts with 100.0000 (Formatting would have
allowed you to print fewer pointless zeros.). In the first step, four paths go up
to 109.4.. and one goes down to 90.5... The path that went down to 90.5.. then
goes up to 99.1... The first path goes up to 109.4.. then down to the same value,
99.1... This shows that the tree is recombining: Sy - d - u (the third path) is
equal to Sg - u - d (the first path). The first and fourth paths end in the same
place, S, = 115.6.., but take different “paths” to get there. Both paths end at
Soubd?, going up six times and down four times.

first path: up, down, up, down, down, up, up, down, up,

fourth path: up, up, up, down, down, down, up, up, down,

> sourke(”bianth.R")

> S0 = 100
> binPath(n, mu, sig, S0, T)

[1] 100.00000 109.48683 99.10000 108.50145 98.20810 88.89126 97.32423 106.55721 96.44831 105.59820
[11] 115.61612
> binPath(n, mu, sig, S0, T)

[1] 100.0000 109.4868 119.8737 108.5015 118.7948 107.5249 117.7256 128.8941 116.6661 105.5982 115.6161
> binPath(n, mu, sig, S0, T)

[1] 100.00000 90.51317 99.10000 108.50145 118.79480 130.06467 142.40369 155.91329 170.70452 154.51007
[11] 169.16818
> binPath(n, mu, sig, S0, T)

[1] 100.00000 109.48683 119.87367 131.24588 118.79480 107.52494 97.32423 106.55721 116.66612 105.59820
[11] 115.61612
> binPath(n, mu, sig, S0, T)

[1] 100.00000 109.48683 119.87367 131.24588 118.79480 107.52494 97.32423 88.09124 79.73417 87.29842
[11] 79.01656

> |

Figure 5: A script to make a random binomial tree path.

Figure |§| plots five random paths (realizations) of the binomial tree pro-
cess. The parameters are all in the plot. These were made with the script
PlotPaths.R, which uses the function file binPath.R. These are posted with
this handout. You can see (more easily in the plot than just with the numbers)
that the tree is recombining. You can see that multiplying by u (or d) many
times in a row produces a curved line, not a straight one. This is because it’s
part of an exponential, not a linear function. Note that the stock price axis (the
vertical axis) goes from 50 on the low side to 200 on the high side. If p =0, it
should (we think, maybe??) be about as likely to multiply by 2 as to divide by
2.

up,
up,



Binomial tree paths, T = 1.00, sig = 0.30, mu = 0.10
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Figure 6: Binomial tree paths with n = 20 steps.

Figure [7] gives five paths with n = 500 steps in the same time interval. This
means that At = T/n is much smaller. The up and down multipliers « and d
are much closer to 1 and the up and down probabilities p,, and py are closer to
%. Thanks to lines 11 to 16 in the code of Figure |4 you can make this plot just
changing n to 500 in one place in the code.

Figure [§ has At ten times smaller than Figure []} You cannot see the in-
dividual circles on a trajectory, but they’re still there in the code. The circles
blend together to form thick random curves. The lowest end is the trajectory
that takes Sy = 100 to S ~ 75. On the high end are two trajectories that take
So = 100 to St ~ 150. If you run it again, you get five different curves, but
they are in a similar range.



Some comments about the script PlotPaths.R. It has a lot of lines but it
wasn’t hard to create. I started with the plot script from the earlier handout
plotting.R. That had a title with parameters (I changed the parameters, but
it’s still a sprintf () statement. It had a call to the plot function plot() to
create one curve, the axes, title, etc. It had a call to 1ines (). I modified the
call to lines() to print the second path. Then I copy/pasted that call three
times to print paths 3, 4, and 5. I did some other copy/pasting to make the
five calls to binPath() and other things. You don’t measure the difficulty in
creating a piece of software by the number of lines. It depends on how you
create it and what code you start with.

Binomial tree paths, T = 1.00, sig = 0.30, mu = 0.10
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Figure 7: Binomial tree paths with n = 500 steps.



Binomial tree paths, T = 1.00, sig = 0.30, mu = 0.10
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Figure 8: Binomial tree paths with n = 5000 steps.

Histogram of simulation data

Just five paths do not give a clear picture of the distribution of paths in the
random binomial tree model. A histogram is a plot that reveals the distribution
of random samples from a data set or from a sequence of simulations. Suppose
you have m data values X7, ..., X;, and you want to learn their distribution.
It is done by dividing the z—axis into bins. A bin is a small interval By =
[k—1,x]. The breakpoints xj are usually (but not always) separated by uniform
spacing Az, so xp = xg + kAz. The bins are By = [zg, x1], Bs = |21, x2], etc.



The bin counts are the number of data values in each bin:
N = # {}(5 S l?k} .

A graph of Ni as a function of k is a histogram.

A histogram reveals (with some noise and inaccuracy) the probability density
p(z) that the data samples X, come from. If X is a random variable with
probability density p(z), then the probability for X to be in bin By, is (exactly
and then approximately)

Tk

pr =Pr(X € By) = / p(z)dr ~ Az p(zy) .

Tk—1

The probability to be between zj_; and xj is the area under p(z) in that
interval, which is approximately the width x the height, which is Az - p(xy). If
you have m data samples from the density p(x), then the expected number to
land in By, is

EH]Vk]i: mpg .

For large m, the law of large numbers says that mp; is a reasonable approxi-
mation of E[Ng]. If we use the approximate expression for py, this leads to the
approximation

N,
mAzx

(3)

In the graph, the difference between plotting Ny or plotting N /(mAz) is just
the label on the vertical axis. Figures [J] and [I0] have the vertical axis labelled
as a probability density, which means that it’s plotting the right side of .

The difference between the histograms in Figures [9] and [I0] is only that
the number of paths in Figure is 100 times more. For some reason, the R
histogram function hist () chose bigger bins for Figure [10] even though I asked
for the same number of bins. Comparing the figures, you can see that using 100
times more paths makes the histogram less noisy. But it still is noisy. It isn’t
easy to estimate probability densities.

Figure [T1] shows the script that made these histograms. Lines 4 to 8 are
parameters, as before. Line 9 sets the number of paths. Lines 11 to 16 generate
m sample paths and record the final price for each path in an array called S.
After that it’s graphics as before. Line 24 says to use 30 bins. Line 25 says
to label the vertical axis as probability density (using formula or something
close to it — the documentation isn’t clear on this point).

It took quite a while for my three year old laptop to run the program. I
could have coded it to run faster, but this isn’t a coding class. It would be even
faster in a compiled programming language like C++. But still, simulations like
this tend to be slow.

p(ry) =

10
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Figure 9: Histogram of m = one thousand realizations of Sp.
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Figure 10: Histogram of m = one hundred thousand realizations of St.
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[ JON ) \t] binHistogram.R
1 # create a histogram of the price distribution at the end
2 # of a binomial tree process
3
4 n 500 # number of steps in a path
5 mu =.1 # expected rate of return
s sig = .3 # volatility
7 T =1 # final time
s SO =1
o m = 100000 # number of paths
10
1M1 S =1im # will hold the final prices
12 v for C j in 1:m){
13 p = binPath(n, mu, sig, S@, T)
14 S[3] = p[n+1]
154 }
16
17 title = sprintf("Stock price distribution, T = %5.2f, sig = %5.2f, mu = %5.2f",
18 T, sig, mu)
19 subtitle = sprintf("Using %8d paths and %6d steps per path", m, n)
20
21 Hemmmmmmmmee- copy from here ---—---- - e e
22
23 hist( S,
24 breaks = 30,
25 probability = TRUE,
26 plot = TRUE,
27 main = title,
28 sub = subtitle,
29 x1lab = "stock price™)
30
31 B copy to here —--=------mmmm
32
33
34 # make a file with an image of the plot
35
36 pdf("StockPriceHist.pdf") # tell R to create a .pdf file for the plot
37
38 # Plot commands, copy and paste from above
39
40 Hemmmmmmmmee- copy from here ---—---- - e e e
41
22 hist( S,
43 breaks = 30,
44 probability = TRUE,
a5 plot = TRUE,
46 main = title,
a7 sub = subtitle,
48 x1lab = "stock price™)
49
- copy to here -------------mmm

a
L =]

Figure 11: Script that makes the histograms of Figure [J] and [I0]
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