
Computational Methods in Finance, Lecture 2,

Di�usions and Di�usion Equations.

Jonathan Goodman �

Courant Institute of Mathematical Sciences, NYU

September 24, 1999

1 Introduction

This lecture and the next are about �nite di�erence methods for solving
the di�usion equations that arise in �nancial applications. Before getting to
�nite di�erences, we review stochastic di�erential equations. As in Lecture 1,
we discuss the forward and backward equations and the di�erences between
them.

2 Di�usions and Di�usion Equations

Lecture 1 discusses Markov processes in discrete state space and discrete
time. Now we turn to continuous time and continuous state space. The
state at time t is a vector, X 2 Rn consisting of n components, or \factors",
X = (X1; : : : ; Xn). The dynamics are given by the Ito di�erential equation

dX(t) = a(X(t))dt+ b(X(t))dZ : (1)

Here Z(t) is a vector of m independent standard Brownian motions. For
each x, there is a \drift", a(x), and an n � m matrix b(x), that is related

�goodman@cims.nyu.edu, or http://www.math.nyu.edu/faculty/goodman, I retain the
copyright to these notes. I do not give anyone permission to copy the computer �les related
to them (the .tex �les, .dvi �les, .ps �les, etc.) beyond downloading a personal copy from
the class web site. If you want more copies, contact me.

1



to the volatility. There is no reason that m, the number of noise sources,
should equal n, the number of factors, but there is no reason ever to have
more noises than factors. The columns of b are vectors in Rn. Column j

gives the in
uence of noise j on the dynamics. If these columns do not span
R

n, then the di�usion is \degenerate". Otherwise, it is nondegenerate. Both
types come up in �nancial applications.

As in Lecture 1, there are forward and backward evolution equations that
are dual to each other. The forward equation is for u(x; t), the probability
density for X(t). This is the \di�usion equation"

@tu = �
nX

j=1

�
@xjaj(x)u

�
+

1

2

nX
j;k=1

@xj@xk (�jk(x)u) : (2)

The matrix of di�usion coeÆcients, �, is related to b by

�(x) = b(x) � b�(x) : (3)

We write M� for the transpose of a matrix, M . The coeÆcients, aj(x), in
(2) are the components of a in (1).

A strict mathematical derivation of (2) from (1) or vice versa is outside
the scope of this course. However, some aspects of (2) are natural. First,
because u is a probability density, the integral of u(x; t) over x should be
independent of t. That will happen if all the terms on the right of (2)
are derivatives of something (i.e. @x(a(x)u) rather than a(x)@xu). This is
sometimes called \conservation form". The second term on the right of (2)
involves two derivatives. Someone used to physical modeling might expect it
to take the form

WRONG
1

2

nX
j;k=1

@xj�jk(x)@xku : WRONG (4)

The actual form (2) has the \martingale" property that, if there is no drift
(a � 0), then the expected value of X does not change with time. To see
this, use (2) with a = 0 and compute

@tE [X(t)] = @t

Z
xu(x; t)dx

=
Z
x
1

2

nX
j;k=1

@xj@xk�jk(x)ud

= 0 :

2



The last line follow from the one above if you integrate by parts twice to put
the two derivatives on the x. The result would generally not be zero using
(4) instead of (2).

Here is an equally rigorous derivation of the relation (3) between volatility
and di�usion coeÆcients. Suppose �rst that n = m = 1. The number �
should depend on b in some way. Observe that the di�usion governed by (1)
will be unchanged of b is replaced by �b, because Z(t) is indistinguishable
from �Z(t). This suggests the formula � = b2. In general, we need a matrix
analogue of � = b2 that produces an n� n matrix, �, from an n�m matrix,
b. The simplest possibility is (3).

As another check, suppose b is constant b and a = 0. Then we can match
moments. Use (1) and assumeX(0) = 0 and1 Z(0) = 0 and getX(t) = bZ(t).
From this it follows that

cov(X) = E (X(t)X�(t)) = bb�t :

On the other hand, from (2) we compute

@tE (XX�) = @t

Z
xx�u(x; t)dx

=
1

2

Z
xx�

X
jk

@xj@xk�jkudx

= � :

which again agrees with (3).
The drift term in (2), @xau, corresponds to the drift term in (1), a(X)dt.

It is easy to see what the term would be if a were constant (independent
of x and t) and b were zero. In that case the solution of (1) would be
X(t) = X(0) + at. For this reason, the probability density is also simply
shifted with speed a: u(x; t) = u(x� at; 0). This function satis�es (2) (if the
signs are right).

As in Lecture 1, the simplest backward equation is for the expected payout
starting at x at time t:

f(x; t) = E [fT (X(T ))jX(t) = x] :

More complicated expectations satisfy more complicated but related equa-
tions. The backward equation for f is

@tf +
X
j

aj(x)@xjf +
1

2

X
jk

�jk(x)@xj@xkf = 0 : (5)

1The Wiener process is usually de�ned to that Z(0) = 0.

3



Still following Lecture 1, this is supplemented with \initial data" given at
the �nal time, T , f(x; T ) = fT (x), and determines f(x; t) for t < T . Again,
we can express unconditional expectation in terms of conditional expectation
starting from time t and the probability density for X(t):

E [fT (X(T ))] =
Z
f(x; t)u(x; t)dx : (6)

The fact that the right side of (6) is independent of t allows us to derive (5)
from (2) or vice versa. Finally, f satis�es a \maximum principle":

min
y

f(y; T ) � f(x; t) � max
y

f(y; T ) if t < T .

The probability interpretation of f makes this obvious; the expected reward
cannot be less than the least possible reward nor larger than the largest.

We can motivate (5) using a PDE (Partial Di�erential Equation) version
of the argument from lecture 1. For now, we will just give a way in which (5)
and (2) are consistent with each other. The more detailed derivation of (5)
from (2) will have to wait until we know more about Brownian motion. For
now, we just compute the expected value, at time 0, of the payout at time T
by \averaging" over the possible states at some intermediate time, t. Using
the probability density for X(t), this gives

E [fT (X(t))] =
Z
E [fT (X(T )) j X(t) = x] u(x; t)dx

=
Z
f(x; t)u(x; t)dx :

Since the left side does not depend on t, the right side also must be indepen-
dent of t. This leads to

0 =
d

dt

Z
f(x; t)u(x; t)dx

=
Z
f(@tf(x; t))u(x; t) + f(x; t)@tu(x; t)g dx :

The evolution equation (2) transforms this into

0 =
Z
f(@tf(x; t)) u(x; t) � f(x; t)

nX
j=1

@xj (aj(x)u(x; t))

+ f(x; t)
1

2

X
jk

@xj@xk (�jk(x)u(x; t))

9=
; dx :

4



Now we want to integrate by parts. Normally we would get terms with the
derivatives on f and \boundary" terms. Here, there are no boundary terms
and2 u ! 0 as x ! 1. Upon integrating by parts and grouping terms, we
come to:

0 =
Z 0
@@tf +

X
j

aj(x)@xjf +
1

2

X
jk

�jk(x)@xj@xkf

1
Au(x; t)dx :

The simplest way for this integral to be zero automatically is for f to satisfy
(5).

2.1 Abstract duality

The relation between (2) and (5) may be stated more abstractly using the
language of adjoint operators. This has the advantage of clarifying the rela-
tionship between the continuous time, continuousX version we are discussing
here and the discrete time and discrete X version from lecture 1. Last lec-
ture, we distinguished between row and column vectors. The abstract version
of this distinction is the distinction between a vector space, V , and its \dual
space", V �. For example, if V is the space of row vectors, then V � is the
space of column vectors. The abstract relationship between a vector space
and its dual is that elements of V � are linear functionals on V . A linear
functional is a linear function that produces a number from a vector. In the
row and column vector setting, a column vector, f produces a function on
row vectors by taking row vector u to the matrix product u � f . Any such
abstract pairing is written3 (u; f). Conversely, any such linear functional
corresponds to a column vector. Summarizing, the spaces of row vectors
and column vectors of a given dimension have a natural \duality pairing"
given by the matrix product: (u; f) = u � f . The matrix product u � f is the
de�nition of (u; f) in this case.

In our current setting of functions of a continuous variable (or set of
variables), x, the \duality relation" is de�ned by integration. If f(x) is a
(payout) function, then we may de�ne a linear functional on (probability)

2For example, if a and b are bounded it is impossible for X(t) to \escape to 1" in
�nite time. This implies that u(x) goes to zero as x goes to in�nity.

3Notations of this kind were �rst introduced by the English physicist Dirac. He would
have written < u j f >. The left part, < u j, would have been called a \bra" vector, and
the right, j f >, a \ket". Putting them together forms the Dirac\bracket".

5



functions by taking a function u(x) to
R
u(x)f(x)dx. That is, the duality

relation given by

(u; f) =
Z
u(x)f(x)dx :

Here again, the right side is the de�nition of the left side. I wish it were
possible to think of functions u as in�nite continuous rows and functions f
as corresponding columns.

The general abstract analogue of a square matrix is a \linear operator",
which is a map from V to V , or from V � to V �. Now suppose we have a dual
pair of vector spaces and a linear operator, A, on V , then there is a \dual"
operator on V �. The dual of A is written A�. If f 2 V �, then A�f is another
element of V �. The duality relation for operators is that (Au; f) = (u;A�f)
for every u 2 V and f 2 V �.

In the case of row and column vectors from lecture 1, a matrix, M , acts
as a linear operator on row vectors by matrix multiplication from the right.
That is Au is the row vector given by the matrix product u �M . You should
not think of A as a matrix, or Au as matrix vector multiplication, because u
has the wrong shape multiplication from the left be a matrix. The dual of A is
also given by the matrix M , this time acting on column vectors, f by matrix
multiplication from the left. That is, A�f is given by the matrix productM �f ,
which is another column vector. The duality relation, (Au; f) = (u;A�f),
in this case boils down to the associativity of matrix multiplication. First,
(Au; f) = (u �M; f) = (u �M) � f , also (u;A�f) = (u;M � f) = u � (M � f).
Because matrix multiplication is associative, (u �M) �f = u � (M �f). Note, in
this last formula, the parentheses refer to groupings in matrix multiplication
rather than the duality pairing. This is a 
aw in accepted mathematical
notation that I am powerless to correct.

Now we come to the point of this subsection, the duality relation con-
necting the equations (2) and (5). If u = u(x) is a function of the continuous
variable x, then we can de�ne the linear operator that gives the function v(x)
by

v(x) = �
nX
j

@xjaj(x)u(x) +
1

2

X
jk

@xj@xk�jk(x)u(x) :

In operator notation, we might write

(Au)(x) or Au(x) = �
X
j

@xjaj(x)u(x) +
1

2

X
jk

@xj@xk�jk(x)u(x) :

6



The evolution equation (2) is then @tu = Au.
We �nd the dual operator for A through the de�nition of the duality

pairing and integration by parts. Using the notation g = A�f , we have,
using integration by parts,

(Au; f) = (u;A�f) = (u; g)Z
Au(x)f(x)dx = (u; g)

Z 8<
:�

X
j

@xjaj(x)u(x) +
1

2

X
jk

@xj@xk�jk(x)u(x)

9=
; f(x)dx = (u; g)

Z
u(x)

8<
:
X
j

aj(x)@xjf(x) +
1

2
�jk(x)

X
jk

@xj@xkf(x)

9=
; =

Z
u(x)g(x)dx :

Look at the last line here. If we want this to be true for every function u(x),
we should set the left parts of each side equal. That is

g(x) = A�f(x) =
X
j

aj(x)@xjf(x) +
1

2
�jk(x)

X
jk

@xj@xkf(x) :

The backward evolution equation (5) may now be written

@tf = �A�f :

The derivation of (2) from (5) may be written abstractly too. For each
t we have a vector u, which we write u(t). Be careful this u(t) is a vector
function of t rather than an \ordinary" function. That is, u(t) is an element
of V rather than being a single number. We similarly de�ne f(t) 2 V �.
The expectation that is independent of t is u(t); f(t) =

R
u(x; t)f(x; t)dx.

Di�erentiating and using the abstract form of the u evolution equation, we
get4

0 = @t(u(t); f(t)) = (@tu(t); f(t)) + (u(t); @tf(t)) :

Using @tu = Au and taking the dual, this gives

(u(t); A�f(t)) = (u(t);�@tf(t)) :

The simplest way to make this true is to have @tf(t) = �A�f(t). This is the
abstract form of the f evolution equation (5).

4Let's believe that the product rule for di�erentiation works for duality pairings as it
does for ordinary products, which it does.

7



2.2 Boundaries and boundary conditions

In addition to initial conditions, di�usion equations often come with bound-
ary conditions. In this case, the \domain" will be a subset of all possible x
values. The boundary of the domain will be called B. Financial applications
often give rise to di�usion equations without boundary conditions. For ex-
ample, there are no natural restrictions on the price of a stock. Boundary
conditions do come in, for example, when working with knockout features.
A knockout at a set B means that there will be no payout if X(t) 2 B for
any 0 � t � T . To value such an instrument, we use the backwards equation
with \Dirichlet" boundary condition f(x; t) = 0 for x 2 B. If the forward
equation is applicable, we also apply the Dirichlet boundary condition to u.
In the latter case, we usually have

R
udx < 1. This u(x; t) represents the

probability density for those paths that have never touched the boundary.
The complimentary probability is the probability of touching the boundary
at some time:Z

u(x; t)dx+Pr (X(t0) 2 B for some t0 � T ) = 1 :

Most di�usions in �nance do not \live" in all of Rn, but in a natural
subset. For example, stock prices and interest rates are usually positive.
In these cases, the di�usion coeÆcients may go to zero, as X gets close to
the edge, in such a way that X(t) can never leave the set. For example,
in the model used by Black and Scholes, dS = rSdt + �SdZ, the S(t) can
never become negative if it starts positive. In these cases, no extra boundary
conditions need to be speci�ed. We do not give a boundary condition at
S = 0 when solving the Black Scholes equation.

Often the initial data, f(x; T ), or u(x; 0), are singular. A singularity is
an x value where the function is not smooth. For example, if X(0) = x0
is known, then the initial probability density is a delta function: u(x; 0) =
Æ(x� x0). The payout for a stock option has a jump in its derivative at the
strike price. If the di�usion is nondegenerate (the coeÆcient matrix, �, is
positive de�nite), such singularities quickly smooth out. This may or may
not be true for degenerate di�usions.

3 The Heat Equation, a Model Problem

In designing and understanding computational methods, we try to identify
model problems. A model problem is a simpler computation that helps us

8



focus on the essential diÆculties while temporarily avoiding other complexi-
ties of our actual problem. We must keep in mind that a model problem can
be an oversimpli�cation, some of its features are not shared by the actual
problem.

Our �rst model problem for di�usion equations will be the \heat equa-
tion"

@tu =
1

2
@2xu (7)

in one space dimension. This is to be solved together with initial data
u(x; 0) = u0(x). This problem has in common with general di�usion equa-
tions (2) or (3) the smoothing property, time step constraints for explicit
di�erence methods, and in�nite propagation speed with limited spreading.
It has the unusual features that the forward and backward equations are (up
to a sign) the same, and that there is a simple algebraic formula for the
fundamental solution.

4 Finite di�erences and marching methods

for the heat equation

Finite di�erence, or \marching methods", compute an approximation to u on
a discrete grid (or lattice or mesh). In the simplest case, the grid is de�ned
by a small space step, �x, and time step, �t. The mesh ponts, uniformly
spaced, are de�ned by xk = k � �x and tn = n � �t. The approximate
solution values we are calculating will be called Un

k . The accuracy of the
approximation is determined by the di�erence between Un

k and the exact
values u(xk; tn). For example, the forward Euler method is usually \second
order accurate" in space and �rst order in time, which means that5

Un
k � u(xk; tn) = O(�x2 +�t) :

In marching methods, the numbers Un
k are computed one \time step" at

a time. First, the numbers U0
k = u(xk; 0) are taken from the given initial

data. Now suppose we have computed Un
k for all k. We want to compute

Un+1
k for all k. This is a time step. Note that we do not compute Un+1

k from

5For de�nitions of order of accuracy, see my lecture notes on Scienti�c Computing, or a
good book on numerical analysis, such as that by Dahlquist and Bj�ork, or that of Isaacson
and Keller.

9



Un
k alone. In the simplest case, again forward Euler, Un+1

k depends on Un
k�1,

Un
k , and Un

k+1.
The main idea is to replace each of the partial derivatives in (7) with

a �nite di�erence approximation to it. The �nite di�erence approximations
should be chosen so that it is possible to compute the Un+1

k from the Un
k , and

so that the overall method is stable. Stability is a real worry, but one that
we will face up to later.

To implement this idea, we want approximations for the partial deriva-
tives @tu and @2xu at the grid point (xk; tn). We will approximate @tu by the
\forward di�erence":

(@tu) (xk; tn) �
u(xk; tn +�t)� u(xk; tn)

�t

�
u(xk; tn+1)� u(xk; tn)

�t

@tu(xk; tn) �
Un+1
k � Un

k

�t
: (8)

For @2xu, we will use a central second di�erence

�
@2xu

�
(xk; tn) �

u(xk +�x; tn)� 2u(xk; tn) + u(xk ��x; tn)

�x2

�
u(xk+1; tn)� 2u(xk; tn) + u(xk�1; tn)

�x2

@2xu(xk; tn) �
Un
k+1 � 2Un

k + Un
k�1

�x2
: (9)

While the formulae (8) and (9) are approximations, we use them to make an
exact de�nition of Un

k . That is, we choose the U
n
k to satisfy

Un+1
k � Un

k

�t
=

1

2

u(xk+1; tn)� 2u(xk; tn) + u(xk�1; tn)

�x2
: (10)

A little manipulation of (10) leads to

Un+1
k = aUn

k�1 + bUn
k + cUn

k+1 ; (11)

where

a =
�t

2�x2
; b = 1�

�t

�x2
: c =

�t

2�x2
: (12)

It is now clear, we can use (11) to compute all the Un+1
k if we already know

all the Un
k . As I said earlier, each value at the future time depends on

10



three values at the present time. The coeÆcients (12) have a probabilistic
interpretation that we will discuss later when we show that this is exactly
the \trinomial tree" method.

For future reference, note that the coeÆcients a, b, and c, are all positive
only if �t < �x2. In practice, if you violate this constraint, the computation
will be \unstable". In fact, the computation will quickly \blow up". Later
notes will discuss this in detail.

I close with a note about programming. The natural way to program
the formula (11) in C/C++ would be to use an array with two indices.
However, there is an equally eÆcient way to program it that uses only two
one dimensional arrays. Since we typically need to use a large number of
time steps, this is a large saving in storage. If we call the values on the right
of (11) just Uk and the values on the left Vk, then we just compute the values
in the V array from the values in the U array. Having done this, we reverse
the roles of U and V , that is, overwrite the U array with values computed
from V . The code to take two time steps might go

timeStep(V,U);

timeStep(U,V);

where timeStep is the routine that applies the formula (11) for all k values.

11


