Assignment 5.

Given December 8, due end of finals week.

Objective: To work with advanced Monte Carlo methods

The portfolio is the same as that of Assignment 4. Let V be the value of the portfolio at six months, as before. We want the following quantities:

$$\overline{v} = E(V) \tag{1}$$

$$\sigma_V^2 = \mathrm{E}\left((V - \overline{v})^2\right) \tag{2}$$

$$v_p \qquad \text{so that } \Pr(V < v_p) = p \ . \tag{3}$$

$$v_p$$
 so that $\Pr(V < v_p) = p$. (3)

We can estimate v_p using "order statistics". Suppose V_1, \ldots, V_N are the N sample values of V resulting from N independent paths. The notation $V_{(k)}$ refers to the same N numbers, but in increasing order: $V_{(1)} \leq V_{(2)} \leq \cdots$. Now choose k so that $k/N \approx p$, and use as estimator

$$\hat{v}_p = V_{(Np)} \quad . \tag{4}$$

If f(v) is the probability density function for V, the variance of \hat{v}_p is approximately

$$\frac{p(1-p)}{Nf(v_p)} .$$

Try to verify this computationally.

Use the SDE solver from Assignment 4 to estimate \overline{v} , σ_v^2 , and v_p with p=1%. Then redo this using as control variate the same portfolio but with European style options, for which the expected value can be found analytically. Warning: this is not the Black-Scholes "rational" price. This does not apply to v_p . Finally, extimate the perturbations of these three quantities when

- (i) the growth rate of stock 1 goes to .35.
- (ii) the covariance of $X_1(1)$ and $X_2(1)$ goes from .84 to .9.

Use the "different paths" method, the "same paths" method, and the "score function" method. Comment on the results. Warning: this is a class in computing, so you should comment on computational advantages and disadvantages, not on the financial significance of the answers.

When you have finished all this, try to determine a suitable way to relax and recover from a tough semester! You're done.

¹In statistics, the term "order statistic" refers to a statistic that depends on the samples but not on the order in which whey are obtained.