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THE CALCULATION OF THE TOPOLOGICAL DEGREE BY
QUADRATURE*

T. O'NEILt anp J. W. THOMAS}

Abstract. The topological degree of a function on R", a useful tool in applied mathematics, is
computed by applying Gauss-Legendre quadrature to Kronecker’s integral definition. An error
analysis is developed from the Sarma-Eberlein measure of goodness.

1. Introduction. In recent years many new applications of the topological
degree of a mapping have been introduced. Most of these applications depend on,
or can be reduced to, the calculation of the topological degree of a function
defined on R". Examples of applications in which the topological degree of func-
tions defined on R" is needed include ordinary differential equations (see, for
example, [17],[7] or [8]), and bifurcation theory. (See, for example, [17].) Examples
of results that allow the calculation of the topological degree on a Banach space
to be reduced to the calculation of the degree of a function defined on R" (where
nwill usually be small) can be found in [7, p. 217] or [20]. An additional application
of the numerical calculation of the topological degree is that of locating zeros
of functions defined on R". This application is discussed by the authors in [12].

In [2] J. Cronin-Scanlon gives an analytical method for calculating the
degree of a homogeneous polynomial. This method is, however, completely
restricted to homogeneous polynomials. In [5] P. J. Erdelsky gives a numerical
scheme for calculating the Brouwer degree in R2.

In this paper we develop a numerical scheme that will enable us to calculate
the topological degree of a function defined on R". We develop this result by using
Kronecker’s definition of degree (or what he called the characteristic of a function,
see [9] and [10]). This method for calculating the degree and the necessary pre-
liminaries are given in § 2.

In § 3 we give an error analysis for the numerical scheme of § 2 based on the
Sarma-Eberlein measure of goodness Sg. Finally, in § 4 we give some numerical
results.

The authors would like to thank A. Stroud for his advice concerning the
error analysis in § 3.

2. Calculation of the topological degree. We begin this section with
Kronecker’s definition of the degree of a function. For a discussion of the relation-
ships between this definition of degree and the definitions based on algebraic
topology or analysis see [1].

DEerFINITION 1. If f = (f, -+, f,)e C'(B,) and if 0¢ f(B,), then the topo-
logical degree of f relative to the point 0 and the set B, is

1 f det (f,0f/0s, ---, Of /0s,_ )
4B,

d(}.B,.0) = TiE

< 0Sy--+ 0s,_

n—1
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where B, is the open ball {(x,, -, x,): [(x;, x5, -, x,)| <r},
1, e f,
of of ofy/dsy -+ af,/0s,
... = det
det (f’(')sl’ , 5Sn—1) de :
afl/asn—l afn/asn-l
K,_, is the surface of B, (the closure of B,), and [|-| denotes the usual

Euclidean norm.

The above definition is defined only for functions in C!(B,). However, it is
not hard to see that the usual techniques (translating the function, translating
the set, using Sard’s theorem, and taking a limit of functions, see [1]) can be used
to prove the following theorem.

THEOREM 1. Suppose f € C(D), pe R", D is an arbitrary bounded open set
contained in R", and p ¢ f(0D). Then the degree of f relative to the point p and the
set D,d(f, D, p), can be calculated using the Kronecker integral.

Since the Kronecker integral definition of degree is equivalent to the ‘“usual”
definitions, it will have all the properties of the usual topological degree. For a
good discussion of these properties see [1].

To evaluate the Kronecker integral we proceed as follows. Let A:R""! — R"
be defined by

| MOy, -+, 8,-4)=(rcosf,cos0, --cosb,_,
M rsinf,cosf, ---cosf,_,---,rsinf,_,
-cosf,_,,rsinf,_,),

where |0,| £ 7; 10| £ n/2,i=2,---,n~— 1. Then A describes the surface of B,.
We define g:R"~! —» R! by

f1(A) e JlA)
of\(Ay/e0, .- 0f,(4)/06,
()] g0y, 0,-0) =) (1/06,_, --- 0f(4)/06,,

(f3AD+ - + fH?
We then have

1 /2 n/2 n
(3) d(f,B,,0) = f f f g(0,.0,, . 0,_,)d6, db, - - db,_,,
n—1¢ -n/2 -n/2 -n

K

where
27.["/2

K, ===

" T(n)2)
If f=(f;, -, f,) where f;:R" — R', we say f is analytic if each f; is real
analytic. We wish to restrict our investigation of the integral to the case where f
is analytic. Since the set of analytic functions defined on B, is dense in the set of
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continuous functions defined on B,, we can find the degree of f when f is just
continuous through a limiting process. The reason for this restriction will become
apparent in § 3 where the error in our approximation of the integral is discussed.
We now look at some of the properties of g. Since the proofs of Lemmas 1-3 are
elementary and straightforward we state these lemmas without proof.

LEMMA 1. Suppose f:B, — R" is analytic and 0 ¢ f(0B,). Then g as defined in
(2) is real analytic on the parallelepiped

) P={0, .0, )10, smjl0|l sm/2, i=2--,n—1}.

LEMMA 2. g as defined by (2) is periodic of period at most 27 in each variable.

LEMMA 3. g as defined in (2) vanishes on all but two faces of the parallelepiped
P defined in (4).

We attempted to find a multiple integration scheme which would work
for various space dimensions and best utilize all of the properties of g. For instance
the trapezoid rule works well on the first argument of g since we are integrating
over one period of the variable 6,, but converges slowly for the other n — 2
variables. (See [3].) The error formula for the trapezoid rule is also quite difficult
to analyze. Some formulas have been developed for small space dimension (see [6]),
but little is known for large dimensional spaces. Following the advice of Stroud [18]
mostly because g is analytic, we have chosen to employ a Gauss—Legendre product
formula.

We define g*:C, —» R! by

(5) gX(xy,xa, 00, X)) = g(mx, MX,/2, -, mx,/2),
where k = n — 1 and
(6) Co={(x, -, x)ix| 15 i=1,---,k}.

Now apply a change of variable to (3) to get

7 d(f,B,.0)= " f f f FX(%1 X, o X dxy dx - dx.
K, 2 »

We next state the following theorem concerning the Gauss—Legendre integra-
tion formula [9, Thm. 10].

THEOREM 2. Let w(x) be nonnegative on [a,b] and let f(x) be continuous on
this segment. Let x¥ and wY,i=1,---, N, be the points and coefficients, respectively,
of the N-point Gauss—Legendre formula of degree 2N — 1 for w and [a,b]. Then

N b
lim Y wlf(x}) =J wi(x) f(x) dx.
N-w i=1 a

Since g is continuous, g* is also continuous and we obtain the following
corollary to Theorem 2.

COROLLARY 1. Suppose f:B, — R" is analytic in B,, 0¢ f(B,) and g* is
defined by (5). Then g* is real analytic and

T[k N N
=t m Y 3wl wllg* (e, e X)),
Kn_ 12 1 k 1 k

N-=o ig=1 iy=1
where k = n — 1 and K, _ | is as defined in (3).

@  df.B,,0)=
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The problem of finding the degree of f then becomes one of evaluating g*
at several places. To accomplish this a FORTRAN program was written with the
components of A as defined in (1) and their partial derivatives fixed in the program.
The components of f and their partial derivatives are then put into a subprogram
and the chainruleis then employed to find the values in the matrix in the numerator
of g*.

This technique has the advantage that only the function defining subprogram
must be changed to find the degree of a different function. However, we must
write a different program for each space dimension in that A changes with space
dimension. We can, however, reduce the number of programs that have to be
written by utilizing the following theorem.

THEOREM 3. Suppose f € C'(B™), where B™ denotes the ball of radius r with
center at 0,,in R", m < n and

f*(xl’xz”” ’xn)=(f1(xl’ 7xm)"” ’ fm(xla ,xm),xmﬂ,--',x,,),

Then
d(f*, B;,0,) = d(f, By, 0,).

Proof. This is an immediate consequence of the product theorem of topo-
logical degree and the fact that the identity mapping has degree 1. We have

d(f*,B;,0,) =d(f,1,-), By x B;™™,(0,,,0,-,)
= d(f’ B:naom)'d(ln—maB:_m’On—m)
= d(f’B;"aom) 1= d(fa B:naom)

We have written programs to evaluate the degree in R3, R® and R!'°. If we
wish to find the degree of a mapping in a space with dimension different from 3,
6 or 10 but less than 10, we apply Theorem 3. We have written more than one
program because of the inefficiency in handling extra variables. In §4 we shall
calculate the degree of several functions.

3. Error analysis. We shall not attempt to determine the absolute error in our
approximation scheme. Instead we shall use the Sarma-Eberlein measure of
goodness S and apply Chebyshev’s inequality to say that the probability of
choosing the wrong integer for the degree of a function using the N*-point Gauss—
Legendre product formula is less than some function of k and N. We shall use an
approximation of this function to analyze the error in the numerical integration
scheme discussed in § 2. The approximation of S; and some sample values appear
in [11].

Let us make a special note of the fact that since the topological degree is
integer-valued, our problem of error analysis is at least simplified. If we can reduce
our error below 1/2, we then know that the integer part of our solution is exact.
This is a property not enjoyed by most numerical calculations.

To save time and space, we shall now reproduce a minimum of notation on
the Sarma—Eberlein measure of goodness S;. We use the notation and definitions
given by Stroud in [18]. (See also [13], [14], [15] and [16].)
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We suppose that we wish to calculate the integral of an analytic function g
defined on the k-cube C, as defined in (6) and that our numerical scheme is in the
form

9) _Z A;8(B).

Then Sarma (who in [13] generalized Eberlein’s ([4]), results from R' to R¥)
defined normalized error to be

(10)  E*g)= 2“ f f_llg(x)dxl ey — Z Aig(ﬁ»}

and the goodness of fit to be

1/2
(1) Sy = { f [E*(g)]ng} .

It should be noted that the expression for (11) is not one of the usual integrals.
It is, instead, an integral defined on a space 7, of power series coefficients with
”8”1 = Z |ga1,~~»,ak| < 1

Moreover, the value of S; does not depend on the particular function g
(it has been integrated out). For a complete discussion of these ideas see [18].

Nonetheless, S is a measure of how good the integration formula is for all
g’s. Obviously, the smaller Sg, the better the numerical scheme.

To calculate an exact expression for S; would be very difficult. In [11] one
of the authors uses the first nonzero term in a series expansion of S for the N*
point Gauss-Legendre formula as an approximation of S;. We denote this
approximation by S%(N) and state the following theorem from [11].

THEOREM 4. Suppose k and N are as above. Then

23N(N!)4k1/2
k —
StN) = BN DN PEAT

where

2N
My =TTk + 1)(ck + 2),
=1

ck=(k+i- 1)k - 1.

We next consider in particular the error analysis for the integration formula
given in Corollary 1 of § 2. Suppose we wish to find the degree of an analytic map f
and let g* be as was defined by (5). Since g* is then analytic, the error analysis
described above is applicable. Let

1
1
E(g*)=f f g5(xy, -y x ) dxy - dxy
-1 -1

N N
_.Z Z wy, o wig¥ (X, e, X))
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The absolute error in our approximation scheme is then given by
n"E(g*)|
2k— lKn— .
and the degree of f is integer-valued. We then want to determine the values of N
which will give
1 2*'K,_,
E@gY) < = ——"—.
B < 5+

We cannot accomplish this: but we shall determine a bound on the probability
that
k72K

L

Let g = g*/|lg*||, so g e I1,. We have by the linearity of E (the usual expected
value) and E* (equation (10)) that

E(g) _ E(g")
E*g) = 5 = Fg
By Chebyshev’s inequality,

Pr{lE*g)| z pSg} = Pr{lE@g*) = 2“Ig*IpSg} < p~2.
If we choose '

_ Kn—l
P = anlg* | .Sy

2k—2K N 4 k|| ok S 2
Pr{|E(g*)| > k" 1} < [ mlg* | E] .
= T K

we then have

n—1

Or in other words, the probability that the N*-point Gauss-Legendre formula
does not give the correct answer is less than or equal to

‘ 4n*llg* |, Sg |
2 ’ s .
(12) [ K.,
If we use our values of S%(N) from Theorem 4 as an approximation of S;, we have

that the probability that our method gives the wrong answer is less than a number
which is approximately equal to

(13) 47z"||g*||1S’,§(N)]2_ Ankg*] 2PV N Pk
Ko | KGN+ DIEN)TP] 33

It should be pointed out that the radius of the ball B,, in particular the
distance from the boundary of B, to a zero of f, has an effect on |g*||; (unless f
is homogeneous). The size of | g*||, in turn changes the rate of convergence of our
iterative technique. We can, however, say that regardless of the size of ||g*|, it is
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possible to make the probability of error arbitrarily small. To show that the error
bound given by (12) approaches zero, we apply Theorem 5.14-1 of [18, p. 191].
To show that error expression given by (13) can also be shown to approach zero,
we state the following theorem. (This is the expression of error that is most useful
in predicting accuracy of calculation. See § 4.)
THEOREM 5. S%(N) is a strictly monotone decreasing function of N and
Al,im Sk(N) = 0.

We state the above theorem without proof. It is not difficult to prove this
theorem using the expression for S%(N) given in Theorem 4. Also, if one examines
the values of S¥(N) that were calculated in [11], it becomes clear that the probability
of a wrong answer gets small quickly as N and k get larger.

4. Numerical results. The degrees of several mappings were calculated using
the approximation scheme established in § 2. These calculations were performed
on an XDS Sigma 7 computer which carries about 6.5 significant places in single
precision. All calculations were carried out in single precision to reduce the time
expended. Some roundoff error was experienced at large N, but it was felt that
the additional accuracy which could be obtained in double precision was not worth
the additional time used in this mode.

Programs were written for R3, R® and R'°. Those in R* and R® seemed to
perform efficiently while the program in R'® was very slow. Several examples
were run for each program. The examples were run for values of N ranging from
2to 64. In most cases the correct value (within an error of 3) was attained at N = 2
(and stayed at that value for all larger values of N). In all of the examples we ob-
tained the correct answer for N = 10 (and again for all values larger than 10).

To see why the convergence is as rapid as it is, we return to our error analysis
and equation (13). Because of the complexity of g*, it is next to impossible to
obtain any information about ||g*||, . This value is, however, constant with respect
to N. If we let n = 3 and 6, we see that value in (13) is given by n® ||g*|3[SE(N)]?
and (16) n* ||g*||2[S3(N)]?, respectively. Using Theorem 4 we see that SZ(2)
= 527923 x 1074 52(10) = 7.85955 x 107 2°,53(2) = 1.64579 x 10~ %,and S3(10)
= 1.54689 x 107%°. Using these values in the above expressions we see that
unless |g*||, is very large, the probability that we have the wrong answer is very
small.
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