Abstract. We show that gradient trajectories of a definable (in an \(\alpha\)-minimal structure) family of functions are of uniformly bounded length. We show that the length of a trajectory of the gradient of a polynomial in \(n\) variables of degree \(d\) in a ball of radius \(r\) is bounded by \(r A(n, d)\), where \(A(n, d) = \nu(n)((3d - 4)^{n-1} + 2(3d - 3)^{n-2})\) and \(\nu(n)\) is an explicit constant. We give explicit bounds for the length of gradient trajectories of quasipolynomials and trigonometric quasipolynomials. As an application we give a construction of curves (piece-wise gradient trajectory of a polynomial) joining two points in an open connected semialgebraic set. We give an explicit bound for its length. We also obtain an explicit and quite sharp bound in Yomdin’s version of quantitative Morse-Sard Theorem.

1. Introduction

The trajectories of a gradient field, or more generally the flow of a gradient field, appear in various branches of mathematics and its applications. The case of the gradient of a polynomial function is of a particular interest. If \(f : U \to \mathbb{R}\) is a polynomial of degree \(d\) restricted to an open and bounded subset of \(\mathbb{R}^n\), then the length of any trajectory of \(\nabla f\) is bounded by some constant \(A > 0\). This follows from the famous Lojasiewicz’s inequality [Lo1],[Lo2]: there exists \(\rho < 1\) and \(C > 0\) such that

\[
|\nabla f(x)| \geq C |f(x) - c|^{\rho},
\]

for any \(x \in U\) such that \(f(x)\) is close to \(c\) which is a critical value of \(f\). (In fact Lojasiewicz proved this for any analytic function in a neighborhood of \(U\).) However, for a given polynomial \(f\), it does not seem possible to obtain by this method the bound \(A\) in the case where \(U\) is simple, for instance where \(U\) is a unit ball in \(\mathbb{R}^n\). (The constant \(C\) is difficult to control). To our best knowledge no such estimate for \(A\) was known explicitly.

In this paper we prove that actually there is a constant \(A = A(n, d)\) depending only on the degree \(d\) of \(f\) and \(n\) - the number of variables of \(f\), such that the length of any trajectory of \(\nabla f\) is bounded by \(A\). More precisely, in Theorem 7.10, we prove that, if \(U\) is a unit ball in \(\mathbb{R}^n\), then

\[
A(n, d) = \nu(n)((3d - 4)^{n-1} + 2(3d - 3)^{n-2}),
\]

September 23, 2003
2000 Mathematics Subject Classification. Primary 32Bxx, 34Cxx, Secondary 32Sxx, 14P10.
Key words and phrases. gradient trajectories, polynomials, \(\alpha\)-minimal structures.
Partially supported by the European research network RAAG HPRN-CT-00271.
where \(\nu(n) \) is an explicit constant depending only on the dimension \(n \) (see Remark 4.3).

Our method is actually different from the argument of Lojasiewicz: we compare the length of any trajectory to the length of a semialgebraic curve \(\Gamma \) obtained by minimizing \(|\nabla f| \) on the fibers of \(f \). First, by a transversality argument for quadratic forms, we prove in Proposition 7.2 that for a generic polynomial \(\Gamma \) is actually a curve. Then we prove in Theorem 7.7 that, for a generic \(f \), the bound (1.2) holds and finally that it holds in the general case. The estimate for the length of \(\Gamma \) is based on the Cauchy-Crofton formula which we recall in section 4.

In fact our method applies in the more general situation of definable (in an \(\alpha \)-minimal structure) families of \(C^2 \) functions. \(\alpha \)-minimal structures (see e.g., [Dr],[Co],[Ku]) introduced recently by model theorists, are natural generalization of semialgebraic or subanalytic geometry. We recall some basic facts on \(\alpha \)-minimal structures in section 3.

The second-named author proved in [Ku] that for a \(C^2 \) definable function \(f \) on a bounded open set \(U \), there is a constant \(M > 0 \) which bounds the length of the trajectories of the gradient vector field \(\nabla f \). Let us now consider a definable family \(\mathcal{F} = \{ f_p \}_{p \in \mathcal{P}} \) of functions defined on open subsets of \(\mathbb{R}^n \) contained in a compact \(K \). One can naturally ask the following question: does there exist a constant \(M \) such that for all \(p \in \mathcal{P} \), the length of the trajectories of the gradient field \(\nabla f_p \) is bounded by \(M \)? We give the affirmative answer in Theorem 6.1.

Actually, in Theorem 6.1 we also consider the case where \(f_p \) cannot be extended to any neighborhood of \(\overline{U} \), for instance \(f_p \) may be rational with poles on the boundary of \(U \). So we have to consider not only critical values of \(f_p \), but also generalized critical values which we recall in section 5.

Some effective bounds for length of trajectories of gradient of quasipolynomials and trigonometric quasipolynomials are given in section 8. They are based on section 7 and Khovanskii’s theory.

Some of these results where previously established in the Ph.D. thesis of the first-named author (see [D’A2]). We thank R. Moussu for pointing our attention at the paper [Ch], which was useful in the proof of Proposition 7.2.

The last two chapters (added in the second version of the paper) are due to the second named author. We consider a problem of joining two points in a connected component \(A \) of a set \(\{ f > 0 \} \cap B(x_0, r) \), where \(f \) is a polynomial of degree \(d \) and \(B(x_0, r) \) is a ball of radius \(r \) in \(\mathbb{R}^n \). This is the simplest situation considered in robotics. We prove in Theorem 10.3 that any two points in \(A \) can be joined by a piecewise trajectory of \(\nabla g \), where \(g(x) = f(x)(r^2 - |x - x_0|^2) \) is a polynomial of degree \(d + 2 \). Moreover we show that the length of the curve can be bounded by \(2rA(n, d + 2) \), where \(A(n, d) \) is the bound 1.2 in Theorem 7.10. This bound seems to be quite optimal. In all classical papers on this problem the joining curve was semialgebraic and its construction was hard and quite involved, so the estimates for its length were rather coarse. The new idea here was to use trajectories of a polynomial hence transcendental curves. It seems also that for numerical applications our method is of an interest since there are quite efficient algorithms to compute trajectories of gradient of a polynomial.

In the last chapter we consider a quantitative Morse-Sard Theorem. Let \(f : B(r) \to \mathbb{R} \) be a polynomial of degree \(d \) on a ball \(B(r) \subset \mathbb{R}^n \) of radius \(r \). For any \(\varepsilon > 0 \) we consider the set of nearly critical points \(\Sigma_{\varepsilon} = \{ x \in B(r) : |\nabla f(x)| < \varepsilon \} \).
Yomdin proved in [Yo2] that the set \(f(\Sigma_r) \) can be covered by \(N(n,d) \) segments of length \(r \varepsilon \). The number \(N(n,d) \) depends only on dimension \(n \) and degree \(d \). In many situations it is very important to have a good bound for \(N(n,d) \). For instance Donaldson in his important paper [Do] needed the fact that that for fixed \(n \) the function \(d \mapsto N(n,d) \) is bounded by a polynomial in \(d \). We proved in section 10 that \(N(n,d) \leq d(2d-1)^{n-1} + A(n,d) \) which is the first (to our knowledge) explicit bound for \(N(n,d) \) for any \(n \) and \(d \). This bound is not far from optimal in the sense that always \((d-1)^n \leq N(n,d) \).

2. Notations

For simplicity we consider only gradient with respect to the standard Euclidean metric. If \(U \) is an open subset of \(\mathbb{R}^n \) and \(f : U \to \mathbb{R} \) is \(C^2 \) function, then by trajectory of \(\nabla f \), we mean any smooth curve \(x : I \to U \), where \(I \) is a finite union of open intervals \(\mathbb{R} \), such that

\[
x'(t) = \nabla f(x(t)) \text{ and } f \circ x : I \to \mathbb{R} \text{ is injective.}
\]

Note that we allow the trajectory to be discontinuous, but it can meet any fiber of \(f \) only once. Under these assumptions, \(X \) will denote the image of such a trajectory.

Throughout this paper \(\mathbb{R}^n \) stands for the open unit ball in \(\mathbb{R}^n \) and \(S^{n-1} \) for the unit sphere in \(\mathbb{R}^n \), both with respect to the Euclidean metric. For simplicity, \(|\cdot| \) denotes here the Euclidean norm corresponding to the standard inner product \(\langle \cdot , \cdot \rangle \).

3. O-minimal structures

We recall below the definition of o-minimal structures on the real field. The rest of this section is devoted to some examples and properties of o-minimal structures that will be useful for the proof of theorem 6.1.

Definition 3.1. Let \(\mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n \), where each \(\mathcal{M}_n \) is a family of subsets of \(\mathbb{R}^n \). We say that the collection \(\mathcal{M} \) is an o-minimal structure on \(\mathbb{R} \) if:

(i) each \(\mathcal{M}_n \) is closed under finite set-theoretical operations;

(ii) if \(A \in \mathcal{M}_n \) and \(B \in \mathcal{M}_m \), then \(A \times B \in \mathcal{M}_{n+m} \);

(iii) let \(A \in \mathcal{M}_{n+m} \) and \(\pi_n : \mathbb{R}^{n+m} \to \mathbb{R}^n \) be the projection on the first \(n \) coordinates, then \(\pi_n(A) \in \mathcal{M}_n \);

(iv) let \(f, g_1, \ldots, g_k \in \mathbb{R}[X_1, \ldots, X_n] \), then the set \(\{ x \in \mathbb{R}^n : f(x) = 0, g_1(x) > 0, \ldots, g_k(x) > 0 \} \) belongs to \(\mathcal{M}_n \);

(v) \(\mathcal{M}_1 \) consists in all finite unions of open intervals and points.

For a fixed o-minimal structure \(\mathcal{M} \) on \(\mathbb{R} \) we say that \(A \) is an \(\mathcal{M} \)-set if \(A \in \mathcal{M}_n \) for some \(n \in \mathbb{N} \). We say that a function \(f : A \to \mathbb{R}^m \), where \(A \subset \mathbb{R}^n \), is an \(\mathcal{M} \)-function if its graph is an \(\mathcal{M} \)-set. Axiom (v) will be called the o-minimality of \(\mathcal{M} \). We write for short **definable (in \(\mathcal{M} \))** instead of \(\mathcal{M} \)-set.

Example 3.2. We give below a non exhaustive list of o-minimal structures on the real field \(\mathbb{R} \) (see also [Dr-Mi] for detailed definitions and comparisons between the above examples) with examples of functions definable in those o-minimal structures:

1. Semialgebraic sets (by Tarski-Seidenberg): \(f(x,y) = \sqrt{x^4 + y^4} \).
2. Global subanalytic sets (by Gabrielov): \(f(x,y) = \frac{y}{\sin x}, x \in (0, \pi) \).
3. \(\mathbb{R}^{\exp} \)-definable sets (by Wilkie [Wi]): \(f(x,y) = x^2 \exp(-\frac{y^2}{x^4 + y^4}) \ln x \).
4. Cauchy-Crofton Formula

Let \(\Gamma \) be a compact definable curve and let \(\mathcal{H} \) denotes the set of affine hyperplanes in \(\mathbb{R}^n \). Then, for almost every \(H \in \mathcal{H} \) (that is except maybe for a definable subset \(\mathcal{H}_1 \subset \mathcal{H} \) of codimension greater than 1), the set \(\Gamma \cap H \) is finite. Let \(i(\Gamma, H) \) denote the cardinal of \(\Gamma \cap H \).

Cauchy-Crofton formula 4.1 (see e.g. [Fe]). There exists a normalization of the canonical measure \(d\mu \) on \(\mathcal{H} \) such that the length of \(\Gamma \) can be expressed with the following formula (Cauchy-Crofton):

\[
\text{Length}(\Gamma) = \int_{\mathcal{H}} i(\Gamma, H) d\mu.
\]
Note that the Cauchy-Crofton formula is still valid if we just assume Γ to be a rectifiable curve. However, the definability hypothesis is crucial for the following corollary:

Corollary 4.2. Let $K \subset \mathbb{R}^n$ be a compact set and let $\{\Gamma_p\}_{p \in \mathcal{P}}$ be a definable family of definable curves contained in K. Then, there exists a constant $m > 0$, depending on the family, such that for any $p \in \mathcal{P}$,

$$\text{Length}(\Gamma_p) \leq m.$$

Proof. Note that $\mathcal{C} = \{(p,H) \in \mathcal{P} \times \mathcal{H} : i(\Gamma_p, H) < \infty\}$ is a definable family. Moreover by the uniform finiteness theorem there exists an integer i such that $i(\Gamma_p, H) < i$ for any $(p,H) \in \mathcal{C}$. Now it is enough to apply the Cauchy-Crofton formula. \square

Remark 4.3. Note that in Corollary 4.2 the constant m is the product of some integer i by the normalized volume of the hyperplanes that intersect the compact set K. Let us denote by $\nu(n)$ this volume when $K = B^n$. Then we have the following formula (see [Mo])

$$\nu(n) = \frac{n \text{Vol}_n(B^n)}{\text{Vol}_{n-1}(B^{n-1})}.$$

Note that $\nu(n)$ can be computed in a different way using the Euler Gamma function (see for instance [Fe]). We thus obtain the following alternative formula:

$$\nu(n) = 2\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n + 1}{2}\right)\Gamma\left(\frac{n}{2}\right)^{-1}.$$

Note that in dimension 2, we obtain $\nu(2) = \pi$ and, for any $n \in \mathbb{N}$, $\nu(n) \leq 2n$.

5. **Generalized and asymptotic critical values**

Definition 5.1. Let $f : U \to \mathbb{R}$ be a C^1 function defined on an open bounded subset U of \mathbb{R}^n. We say that $c \in \mathbb{R}$ is a **generalized critical value** of f if there exists a sequence $x_\nu \in U$ such that $f(x_\nu) \to c$ and $\nabla f(x_\nu) \to 0$. We denote by $K(f)$ the set of all such values.

We say that $c \in \mathbb{R}$ is a **asymptotic critical value** of f if there exists a sequence $x_\nu \in U$ without any subsequence convergent in U, such that $f(x_\nu) \to c$ and $\nabla f(x_\nu) \to 0$. We denote by $K_a(f)$ the set of all such values.

Note that $K(f) = K_a(f) \cup K_0(f)$, where $K_0(f)$ is the set of critical values of f in the usual sense. Moreover $K(f)$ is always closed, contrary to $K_0(f)$ which may be non-closed if f is non-proper. Remark also that in the definition of asymptotic critical values we can take a sequence $x_\nu \in U$ such that $x_\nu \to b$, where b is a point on the boundary of U. This is a consequence of compactness of U.

In the o-minimal setting, if f satisfies the hypotheses of definition 5.1, we have the following result (cf. [Ku]):

Proposition 5.2. Let $f : U \to \mathbb{R}$ be a C^1 function defined on an open bounded subset U of \mathbb{R}^n. Assume that f is definable in an o-minimal structure, then the set $K(f)$ is finite.
Remark 5.3. Let $\mathcal{F} = \{f_p\}_{p \in \mathcal{P}}$ be a definable family such that each f_p is a C^1 definable function. Let $K(f_p)$ denote the set of generalized critical values of f_p and define $K(\mathcal{F}) = \{(p) \times K_p(f_p) : p \in \mathcal{P}\}$. By the uniform finiteness lemma, the number of elements of $K(f_p)$ is bounded independently of $p \in \mathcal{P}$. There exists a definable cell decomposition of the parameter space (i.e., into a finite number of definable cells), such that on each cell $K(\mathcal{F})$ is a finite union of graphs of definable functions.

6. Trajectories of the Gradients of Definable Family

Let $F : U \to \mathbb{R}$ be a definable function defined on a definable set $U \subset \mathbb{R}^n \times \mathbb{R}^k$. Let $p \in \mathbb{R}^k$, and define $U_p = \{x \in \mathbb{R}^n : (x, p) \in U\}$. For any $p \in \mathbb{R}^k$ such that U_p is non empty, we denote by f_p the definable function $F(\cdot, p)$ defined on the definable open set U_p. Throughout this section, $\mathcal{F} = \{f_p\}_{p \in \mathcal{P}}$ denotes the definable family of such functions f_p. Under these hypotheses, we state the main result of this paper:

Theorem 6.1. Let \mathcal{F} be a definable family of functions as above. Assume that for each $p \in \mathcal{P}$, the function f_p is of class C^2 on U_p. Let K be a compact set in \mathbb{R}^n such that $U_p \cap K$. Then there exists a constant $M > 0$ such that, for all $p \in \mathcal{P}$, the length of any trajectory of ∇f_p is bounded by M.

Proof. We build a definable set $\Delta \subset U$ inside which, for each parameter p, $|\nabla f_p|$ is very small. For any $p \in \mathcal{P}$, let $\varphi_p : \mathbb{R} \to \mathbb{R}^+$ be the definable function given by:

$$\varphi_p(s) = \inf\{|\nabla f_p(x)| : x \in f_p^{-1}(s)|.\]

By convention, we put $\varphi_p(s) = +\infty$ if $f_p^{-1}(s)$ is empty. Note that the function $\varphi : \mathbb{R} \times \mathcal{P} \to \mathbb{R}$ defined by $\varphi(s, p) = \varphi_p(s)$ is definable. Let Δ_p and Δ be the sets defined as follows:

$$\Delta_p = \{x \in U_p \setminus f_p^{-1}[K(f_p)] : |\nabla f_p(x)| \leq 2 \varphi_p(f_p(x))\},$$

$$\Delta = \{(x, p) \in U : p \in \mathcal{P}, x \in \Delta_p\}.$$

The sets Δ and Δ_p are definable. Moreover, it follows easily from the definition of $K(f)$ that if $s_0 \notin K(f_p)$, then there exists a constant $c(s_0) > 0$ such that $\varphi_p \geq c(s_0) > 0$ in some neighborhood of s_0. Hence, if $s_0 \in f_p(U_p) \setminus K(f_p)$, then $\Delta_p \cap f_p^{-1}(s_0) \neq \emptyset$. Let Φ be the definable map as follows:

$${\Phi : \Delta \ni (x, p) \mapsto (f_p(x), p) \in \mathbb{R} \times \mathcal{P}.}$$

Then, according to the definable choice lemma (cf Lemma 3.6), there exists a definable section γ of Φ, that is a definable mapping $\gamma : \Phi(\Delta) \to \Delta$ satisfying: $\Phi \circ \gamma = \text{Id}_{\Phi(\Delta)}$. Clearly we can write $\gamma(t, p) = (\gamma_p(t), p)$, where $\gamma_p : f_p(U_p) \setminus K(f_p) \to \Delta_p \subset U_p$ is a definable mapping.

Let Γ_p denote the image of γ_p. For any $p \in \mathcal{P}$, by routine o-minimality arguments, the definable curve Γ_p is a finite union of points and connected C^1 submanifolds. On each such component of Γ_p, the function f_p is C^1 and injective, hence has only finitely many critical points (by o-minimality). This implies that Γ_p is transverse to the level sets of f_p, except maybe for finitely many levels.

Lemma 6.2. Let X_p be a trajectory of ∇f_p, then $\text{Length}(X_p) \leq 2 \text{Length}(\Gamma_p)$.

Proof. Since Γ_p meets transversally all but a finite number of fibers of f_p, we will assume that the definable curve Γ_p is smooth, connected and transverse to every fiber of f_p. Moreover by deleting finitely many fibers $f_p^{-1}(t)$, $t \in K(f_p)$ we may assume that f_p has no critical values in U_p.

Let $x(s)$ be the arc-length parametrization of the trajectory X_p and $\theta(s)$ be the arc-length parametrization of the curve Γ_p. We fix orientations in the way that both functions $s \mapsto (f \circ x)(s)$ and $s' \mapsto (f \circ \theta)(s')$ are strictly increasing.

Let $\eta : X_p \to \Gamma_p$ be the map defined as follows: for $x \in X_p$, the point $\eta(x)$ is the unique intersection point of the fiber $f_p^{-1}(f_p(x))$ with the definable curve Γ_p. In other words $\eta = (f|_{\Gamma_p})^{-1} \circ (f|_{X_p})$. We compute now η in our arc-length charts, that is we consider $h(s) = \theta^{-1} \circ \eta \circ x(s)$. Clearly, to prove Lemma 6.2 it is enough to show that $h'(s) \geq \frac{1}{2}$.

Taking derivative with respect to s in the equality $f[x(s)] = f[\eta(x(s))]$ we obtain the following:

$$\langle \nabla f[x(s)], x'(s) \rangle = \langle \nabla f[\eta(x(s))], (\eta \circ x)'(s) \rangle.$$

But $x'(s) = \frac{\nabla f[x(s)]}{|\nabla f[x(s)]|}$ hence

$$|\nabla f[x(s)]| \leq |\nabla f[\eta(x(s))]| \cdot |(\eta \circ x)'(s)|.$$

Since $\eta(x(s)) \in \Delta_p$, we have $2|\nabla f[x(s)]| \geq |\nabla f[\eta(x(s))]|$, thus $|(\eta \circ x)'(s)| \geq \frac{1}{2}$. But θ is an arc-length parametrization, so

$$h'(s) = (\theta^{-1} \circ \eta \circ x)'(s) = |(\eta \circ x)'(s)| \geq \frac{1}{2}$$

and Lemma 6.2 follows. \hfill \square

Note that in fact we have proved a more precise estimate for the length of any trajectory of ∇f_p.

Remark 6.3. Let I be a finite union of open intervals in \mathbb{R} and let $x : I \to U$ be a trajectory of ∇f_p. Assume that $x(I) \subset f^{-1}((t_1, t_2))$. Then the length of $x(I)$ is bounded by twice the length of $\Gamma_p \cap f^{-1}((t_1, t_2))$. \hfill \square

Now we can easily finish the proof of Theorem 6.1. Note that the definable family $\{\Gamma_p\}_{p \in \mathcal{P}}$ satisfies the hypotheses of Corollary 4.2, so there exists a constant $m > 0$ such that for any $p \in \mathcal{P}$, the length of Γ_p is bounded by m. Hence, by Lemma 6.2, the length of any trajectory of ∇f_p is bounded by $M = 2m$. \hfill \square

In fact in Theorem 6.1 we can assume that all the definable sets U_p are bounded but not necessarily contained in a fixed compact set K. Let \mathcal{F} denotes a definable family of functions verifying the same assumptions as in Theorem 6.1 except that the definable set U_p are bounded but no more contained in a fixed compact set K. We denote by d_p the diameter of U_p. Then we have the following Corollary:

Corollary 6.4. There exists a constant $M > 0$ such that for every $p \in \mathcal{P}$ the length of any trajectory of ∇f_p is bounded by $M \cdot d_p$.

Proof. Let $f_p \in \mathcal{F}$ and $x_p \in \mathbb{R}^n$ such that $U_p \subset B(x_p, d_p)$. We may assume that the mappings $p \mapsto x_p$ and $p \mapsto d_p$ are definable. Let $T_p : \mathbb{R}^n \ni x \mapsto x + d_pX \in B(x_p, d_p)$. Define $g_p = f_p \circ T_p$. The bound is obtained by applying Theorem 6.1 to the definable family $\mathcal{G} = \{g_p\}_{p \in \mathcal{P}}$. \hfill \square
7. The Polynomial case

Throughout this section \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) denotes a polynomial function of degree \(d \). We will give an explicit upper bound for the length of a trajectory of \(\nabla f \) restricted to the unit ball \(\mathbb{B}^n \) (with respect to the Euclidean metric). First observe that the following Corollary follows easily from Theorem 6.1.

Corollary 7.1. Let \(f \) be a polynomial in \(n \) variables of degree \(d \). Then the length of any trajectory of \(\nabla f \) in a ball of radius \(r \) is bounded by \(rA(n,d) \), where \(A(n,d) \) is a constant depending only on \(d \) and \(n \).

Proof. The family \(\mathcal{F} \) of polynomial functions in \(n \) variables and of degree less or equal to \(d \) is semialgebraic and thus definable in any o-minimal structure. The space of parameters is the space of coefficients of these polynomials. Let \(\mathcal{F}_1 \) be the semialgebraic family formed with the restriction to \(\mathbb{B}^n \) of all functions in \(\mathcal{F} \). Theorem 6.1 applied to the family \(\mathcal{F}_1 \) and \(K = \overline{\mathbb{B}^n} \) provides a bound \(A(n,d) \) on the length of the trajectories independent on the coefficients. Finally, by Corollary 6.4 we get the desired upper bound for the trajectories of \(\nabla f \) in any ball of radius \(r \).

In order to compute \(A(n,d) \) explicitly, we shall construct a semi-algebraic curve \(\Gamma \) with the following property: if \(y \in \mathbb{B}^n \), then

\[
|\nabla f(y)| \geq |\nabla f(x)|, \text{ for some } x \in \Gamma \cap f^{-1}(y).
\]

In other words we have to minimize \(|\nabla f|^2 \) on the fibers of \(f \) restricted to \(\mathbb{B}^n \). More precisely, we shall prove that, for a generic polynomial \(f \) of degree \(d \), the set

\[
\Gamma_1 = \{ x \in \mathbb{B}^n : |\nabla f|^2 \text{ has the minimum at } x \text{ on the regular fiber } f^{-1}(f(x)) \}
\]

is of dimension at most 1. We shall also prove that the set \(\Gamma_2 \subset \mathbb{S}^{n-1} \) defined by

\[
\Gamma_2 = \{ x \in \mathbb{S}^{n-1} : |\nabla f|^2 \text{ has the min. at } x \text{ on the regular fiber } f^{-1}(f(x)) \}
\]

is of dimension 1. Then we take \(\Gamma = \Gamma_1 \cup \Gamma_2 \) and for a generic polynomial we shall give explicit formulas for polynomials describing \(\Gamma_1 \) and \(\Gamma_2 \).

The following proposition shows that the points at which the level sets of the polynomials \(f \) and \(|\nabla f|^2 \) are non transverse, generically define an algebraic curve. Let \(X = (X_1, \ldots, X_n) \) and denote by \(\mathbb{R}_d[X] \) the space of polynomials in \(n \) variables of degree less or equal to \(d \).

Proposition 7.2. Let \(n \geq 2 \) and \(d \geq 2 \). Then, there exists a semialgebraic set \(E_d \subset \mathbb{R}_d[X] \) of codimension greater or equal to 1 such that, for any polynomial \(f \in \mathbb{R}_d[X] \setminus E_d \), the set

\[
\Theta_1(f) = \{ x \in \mathbb{R}^n : d(|\nabla f|^2) \wedge df = 0 \}
\]

is either empty or consists of a finite union of real algebraic curves and points.

Proof. (inspired by [Ch]). Let us denote by \(S_n(\mathbb{R}) \) the space of \(n \times n \) symmetric matrices with real coefficients. We define

\[
\Sigma = \{ (V,H) \in \mathbb{R}^n \times S_n(\mathbb{R}) : \exists \lambda \in \mathbb{R} : H \cdot V = \lambda V \}.
\]

We need the following lemma:

Lemma 7.3. The set \(\Sigma \) is algebraic of codimension \(n - 1 \).
Note that $(V, H) \in \Sigma$ if and only if V and $H \cdot V$ are colinear. This means that all the 2×2 minors of the $2 \times n$ matrix formed by the coefficients of $H \cdot V$ and V are equal to 0. It follows that Σ is algebraic. In order to prove that Σ is of codimension $n - 1$, let Σ_k be the set of matrices $H \in S_n(\mathbb{R})$ such that the maximum dimension of eigenspaces of H is equal to k, or equivalently that k is the maximum multiplicity of eigenvalues of H.

After diagonalization, this condition can be locally written with $k - 1$ equations in general position. Hence Σ_k is smooth semialgebraic of dimension $(\frac{1}{2} n(n+1) - k + 1)$. Let $\pi : \mathbb{R}^n \times S_n(\mathbb{R}) \rightarrow S_n(\mathbb{R})$ denote the projection.

Observe that, if $H \in \Sigma_k$, then $\pi^{-1}(H) \cap \Sigma$ is the union of eigenspaces of H, hence $\pi^{-1}(\Sigma_k) \cap \Sigma$ is of dimension $(\frac{1}{2} n(n+1) + 1)$, thus of codimension $n - 1$ in $\mathbb{R}^n \times S_n(\mathbb{R})$. But $S_n(\mathbb{R}) = \bigcup \Sigma_k$, so Σ is algebraic of codimension $n - 1$. This ends the proof of Lemma 7.3.

Let $H f(x)$ stand for the Hessian matrix of f at the point x. Note that $\nabla((\nabla f)^2) = 2 H f \cdot \nabla f$. Hence we have the following

Lemma 7.4. The set $\Theta_1(f) = \{ x \in \mathbb{R}^n : d((\nabla f)^2) \wedge df = 0 \}$ is the set of points $x \in \mathbb{R}^n$ such that $\nabla f(x)$ is an eigenvector of $H f(x)$.

Let us fix a polynomial f of degree at most d. We are going to consider a deformation \tilde{f} of f by adding quadratic polynomials. For $\alpha = (\alpha_i) \in \mathbb{R}^n$ and $\varepsilon = (\varepsilon_{jk}) \in \mathbb{R}^{\frac{n(n+1)}{2}}$, we put

$$\tilde{f}_{\alpha, \varepsilon}(x) = f(x) + \sum_{i=1}^n \alpha_i x_i + \sum_{1 \leq j \leq k \leq n} \varepsilon_{jk} x_j x_k.$$

Let $\Psi : \mathbb{R}^n \times \mathbb{R}^{\frac{n(n+1)}{2}} \times \mathbb{R}^n \rightarrow \mathbb{R}^n \times S_n(\mathbb{R})$ be the map defined as follows:

$$\Psi(\alpha, \varepsilon, x) = (\nabla \tilde{f}_{\alpha, \varepsilon}(x), H \tilde{f}_{\alpha, \varepsilon}(x)),$$

where $H \tilde{f}_{\alpha, \varepsilon}$ stands for hessian matrix of $\tilde{f}_{\alpha, \varepsilon}$. Note that the differential of Ψ with respect to (α, ε) is the identity on $\mathbb{R}^n \times \mathbb{R}^{\frac{n(n+1)}{2}}$. Hence Ψ is a submersion. By the transversality theorem with parameters (see e.g. [Gu-Po] or [Go-Ma] Chapter 1), we can deduce that there exists an open dense semialgebraic set $S \subset \mathbb{R}^n \times \mathbb{R}^{\frac{n(n+1)}{2}}$ such that the map

$$\Psi_{\alpha, \varepsilon} = \Psi(\alpha, \varepsilon, \cdot)$$

is transverse to Σ, for any $(\alpha, \varepsilon) \in S$. More precisely we fix some stratification of Σ and we claim that $\Psi_{\alpha, \varepsilon}$ is transverse to all strata of Σ. Recall that by Lemma 7.3 the strata of Σ are of codimension at most $n - 1$. This means that for any $(\alpha, \varepsilon) \in S$ the set $\Psi_{\alpha, \varepsilon}(\Sigma)$ is an algebraic set (possibly empty) of dimension at most 1. But $\Psi_{\alpha, \varepsilon}(\Sigma) = \Theta_1(\tilde{f}_{\alpha, \varepsilon})$, by Lemma 7.4. Hence Proposition 7.2 follows.

Note that we can reproduce the previous proof in the case where \mathbb{R}^n is replaced by an algebraic submanifold of \mathbb{R}^n. In particular for the unit sphere \mathbb{S}^{n-1} we have the following result (we denote $r(x) = |x|^2$):

Corollary 7.5. There exists a semialgebraic set $F_d \subset \mathbb{R}_d[X]$ of codimension greater or equal to 1 such that, for any polynomial $f \in \mathbb{R}_d[X] \setminus F_d$, the set

$$\Theta_1(f) = \{ x \in \mathbb{S}^{n-1} : d((\nabla f)^2) \wedge df \wedge dr = 0 \}$$

is nonempty and consists of a finite union of real algebraic curves and points.
Remark 7.6. Note that $(|\nabla f|^2)$ attains its minimum on compact smooth manifold $S^{n-1} \cap f^{-1}(c)$, where c belongs to the nonempty set $f(S^{n-1}) \setminus K$, K is the set of critical points of f on S^{n-1}.

At this point we are able to bound the length of any trajectory of the gradient field for a generic polynomial. According to Proposition 7.2 and Corollary 7.5 we can give an upper bound by estimating the lengths of $\Theta_1(f)$ and $\Theta_2(f)$ in the case where these sets are of dimension at most equal to 1. This gives rise to the following:

Theorem 7.7. Let $n \geq 2$ and $d \geq 2$ be integers. Then there exists a semialgebraic set $G_d \subset \mathbb{R}_d[X_1, \ldots, X_n]$, of codimension greater or equal to 1, such that for any polynomial $f \in \mathbb{R}_d[X_1, \ldots, X_n] \setminus G_d$, the length of any trajectory of ∇f in \mathbb{B}^n is bounded by

$$A(n, d) = \nu(n)((3d - 4)^{n-1} + 2(3d - 3)^{n-2})$$

where $\nu(n)$ is a constant depending only on the dimension.

Proof. Take $G_d = E_d \cup F_d$. Assume that $f \in \mathbb{R}_d[X] \setminus G_d$, then the sets $\Theta_1(f)$ and $\Theta_2(f)$ are curves, by Proposition 7.2 and Corollary 7.5. Moreover their union contains the points at which the function $|\nabla f|^2$ restricted to \mathbb{B}^n is minimal on the fibers of f. Note that $\Theta_1(f)$ is the zero set of a 2-form with polynomial coefficients of degree at most $3d - 4$. Reordering, if necessary, the variables we may assume that $\frac{\partial f}{\partial x_1}$ vanishes on $\Theta_1(f)$ only at a finite number of points. Then $\Theta_1(f)$ - the common zeroes of the coefficients of $dx_1 \wedge dx_i$, $i = 2, \ldots, n$ - contains $\Theta_1(f)$ and possibly some other components which cut $\Theta_1(f)$ only at isolated points. So for a generic affine hyperplane H, the intersection $H \cap \Theta_1(f)$ contains all the points of $H \cap \Theta_1(f)$ which are nondegenerate (hence isolated also in the complexification) and possible other components. By the general version of Bezout’s theorem (see e.g. [Fu]) the number of irreducible components of $H \cap \Theta_1(f)$ is not greater than the product of degrees, that is $(3d - 4)^{n-1}$. Thus we have

Lemma 7.8. For a generic affine hyperplane H the set $H \cap \Theta_1(f)$ has at most $(3d - 4)^{n-1}$ points.

In the same way, $\Theta_2(f)$ is defined by the equation of the unit sphere in \mathbb{R}^n and by the coefficients of the corresponding 3-form. The coefficients of the 3-form associated to $\Theta_2(f)$ are polynomials of degree at most $3(d - 1)$. As above we can choose $n - 2$ coefficients (and the equation of the sphere) to describe $\Theta_2(f)$ generically. So again by the general version of Bezout’s theorem we have

Lemma 7.9. For a generic affine hyperplane H the set $H \cap \Theta_2(f)$ has at most $2(3d - 3)^{n-2}$ points.

Now we are in the position to finish the proof of Theorem 7.7. For a generic polynomial f of degree d we have

$$\Gamma_1 \subset \Theta_1(f) \text{ and } \Gamma_2 \subset \Theta_2(f),$$

where Γ_1 and Γ_2, were defined in the beginning of this section as the set of points where $|\nabla f|^2$ has the minimum on fibers of f restricted to the open ball and respectively on fibers of f restricted to the sphere. We put $\Gamma = \Gamma_1 \cup \Gamma_2$. Let X be a
trajectory of ∇f in the unit ball \mathbb{B}^n. Arguing as in the proof of Lemma 6.2 we can easily prove that

$$\text{Length}(X) \leq \text{Length}(\Gamma).$$

By Lemmas 7.8 and 7.9, the Cauchy-Crofton formula applied to the curve Γ yields

$$\text{Length}(\Gamma) \leq \nu(n)((3d-4)^{n-1} + 2(3d-3)^{n-2}) = A(n,d),$$

where $\nu(n)$ is the measure of the set of affine hyperplanes which meet the unit ball (see Remark 4.3 for the explicit value of $\nu(n)$). Thus Theorem 7.7 follows. \hfill \square

We complete this section by extending the bound to any polynomial function f in n variables and degree less or equal to d.

Theorem 7.10. If $f : \mathbb{R}^n \to \mathbb{R}$, with $n \geq 2$, is a polynomial of degree $d \geq 2$, then the length of any trajectory of ∇f in a ball of radius r is bounded by

$$\nu(n)((3d-4)^{n-1} + 2(3d-3)^{n-2}) \cdot r.$$

Proof. Clearly, by Corollary 6.4 it is enough to prove the estimate for the unit ball \mathbb{B}^n. Let us fix a polynomial $f : \mathbb{R}^n \to \mathbb{R}$ of degree $d \geq 2$ and $\varepsilon > 0$. Let $K_0(f) = \{c_1, \ldots, c_k\}$ be the set of critical values of f. For any $\eta > 0$ let us put $K_\eta(f) = \bigcup_{i=1}^{k} (c_i - \eta, c_i + \eta)$ and $C_\eta = \{ f^{-1}(K_\eta(f)) \}$. We have the following

Lemma 7.11. There exists $\eta > 0$ such that the length of any trajectory of ∇f in the set $C_\eta \cap \mathbb{B}^n$ is bounded by $\varepsilon/2$. (See our definition of trajectory in Section 2).

By the proof of Theorem 6.1 there exists a semialgebraic curve $\Gamma \subset \mathbb{B}^n$ such that the length of any trajectory of ∇f in \mathbb{B}^n is bounded by $2 \cdot \text{Length} \Gamma$. More precisely, as in Remark 6.3 we have: let I be finite a union of open intervals in \mathbb{R} and let $x : I \to \mathbb{B}^n$ be a trajectory of ∇f. Assume that $x(I) \subset f^{-1}((t_1, t_2))$. Then the length of $x(I)$ is bounded by twice the length of $\Gamma \cap f^{-1}((t_1, t_2))$. Recall also that f is injective on Γ, so the length of $\Gamma \cap f^{-1}((t_1, t_2))$ tends to 0 as t_1 tends to t_2 (or t_2 tends to t_1). We can take as t_2 (respectively as t_1) a critical value c_i, now it is easy to conclude since there are finitely many critical values. This ends Lemma 7.11.

Note that $|\nabla f| > 0$ on the compact set $B_\eta = \mathbb{B}^n \setminus C_\eta$. Hence

$$\inf \{ |\nabla f(x)| ; x \in B_\eta \} = \delta > 0.$$

Thus

Lemma 7.12. For any $\rho > 0$ there exists $\theta > 0$ such that for any polynomial $g : \mathbb{R}^n \to \mathbb{R}$ of degree d we have the following:

$$\text{if } \|f - g\| \leq \theta \text{ then, } \angle(\nabla f(x), \nabla g(x)) \leq \rho, \text{ for any } x \in B_\eta.$$

Here $\angle(\cdot, \cdot)$ stands for the (unoriented) angle measure between vectors and $\| \cdot \|$ for a norm on the space of polynomials of degree not greater than d. For instance $\| \cdot \|$ may be the maximum of the absolute value of coefficients.

To conclude the theorem we need to compare the length of a trajectory of ∇f with the length a trajectory of ∇g where g is a generic polynomial close to f.

Lemma 7.13. Let g be a generic polynomial (in the sense of Theorem 7.7). Assume that $\angle(\nabla f(x), \nabla g(x)) \leq \rho < \pi/2$, for any $x \in B_\eta$. Then the length of any trajectory of ∇f in the set B_η is not greater than $\frac{1}{\cos \rho} A(n, d)$.

Let $\Theta(g)$ be the restriction to B_η of the curves constructed in lemmas 7.8 and 7.9 for the polynomial g. Let $X \subset B^n$ be a trajectory of ∇f. Then by the arguments of the proof of Lemma 6.2 we can compare the length of the trajectory X with the length of $\Theta(g)$. We thus obtain that the length of the trajectory X is bounded by $\frac{1}{\cos \rho} \cdot \text{Length } \Theta(g)$. By theorem 7.7 we get the bound $\frac{1}{\cos \rho} A(n, d)$.

At this point, we can complete the proof of Theorem 7.10. For any $\varepsilon > 0$, by Lemma 7.11, there exists $\eta > 0$ (and thus two sets C_η and B_η) such that the length of X restricted to $C_\eta \cap B^n$ is bounded by $\varepsilon/2$. Choose $\rho > 0$ such that

$$\frac{1}{\cos \rho} A(n, d) \leq A(n, d) + \varepsilon/2.$$

Lemma 7.12 and Theorem 7.7 provide a polynomial $g \in \mathbb{R}_d[X] \setminus G_d$ such that

$$\angle(\nabla f(x), \nabla g(x)) \leq \rho$$

in B_η. By Lemma 7.13 the length of X restricted to B_η is bounded by $A(n, d) + \varepsilon/2$. Thus finally $\text{Length}(X) \leq A(n, d) + \varepsilon$. Hence Theorem 7.10 follows. \hfill \Box

8. Examples

Let us fix integers d and n, we will denote by $D(d, n)$ the supremum of length of gradient trajectories of polynomials of degree d in the unit ball in \mathbb{R}^n. We will now show that

Theorem 8.1. For any integers $n, d \geq 2$

$$D(d, n) \geq n^{-1/2} 2^{n-2} d^{n-1}, \quad d \in \mathbb{N}.$$

Proof. We are going to construct a sequence of examples which will confirm the estimate from below. First we recall ”sinusoidal-like” properties of Chebyshev’s polynomials. Recall that the d-th Chebyshev polynomial (of the first kind) $T_d(x)$ is determined by

$$T_d(\cos \theta) = \cos(d\theta).$$ (8.1)

In particular it has the following properties:

Lemma 8.2.

1. $|T_d(x)| \leq 1$, for $x \in [-1, 1]$;
2. T_d has $d+1$ extrema on $[-1, 1]$, and the values at each extremum is ± 1.

Hence the length of the graph of T_d restricted to $[-1, 1]$, is greater than $2d$.

Now return to the construction and, for $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, put

$$f_i(x) = x_{i+1} - T_d(x_i).$$

Next we define a polynomial

$$p = \sum_{i=1}^{n-1} f_i^2.$$

Note that p is a polynomial of degree $2d$ in n variables. The zero set of p is a smooth curve which is the intersection of the hypersurfaces $\{x_{i+1} = T_d(x_i)\}$, for $i = 1, \ldots, n - 1$. It is not difficult to see, by Lemma 8.2, that the length of the curve $C = p^{-1}(0) \cap [-1, 1]^n$ is at least $(2d)^{n-1}$. Now we define our polynomial by

$$f(x) = p(x) + \varepsilon(x_1^2 - n),$$
where $\varepsilon > 0$ is small enough. We will show below that f has only one critical point a which is in fact the global minimum. Note that the set $\{f > 0\}$ is a thin neighborhood of the curve C. Let b be a point in $\{f > 0\}$ very close to the end of the curve C. Here the end of C is precisely the point $(1, T_d(1), T_d(T_d(1)), \ldots)$. Let $x(t)$ be a trajectory of $-\nabla f$ starting from the point b, so the trajectory must stay in the set $\{f > 0\}$ and it must end at the critical point of f. The critical point a is in fact the middle of the curve C. Hence the length of the trajectory $x(t)$ is not less than half of the the length of C which is at least $(2d)^{n-1}$, by Lemma \ref{lem:bounds}. Finally to obtain the desired semialgebraic set in the unit ball we replace $f(x) = f(n^{-1/2}x)$, so Theorem \ref{thm:main} holds.

We are left with computing critical points of f. We have to solve the system

$$
\begin{aligned}
\frac{\partial f}{\partial x_1} &= 2f_2 \frac{\partial f_2}{\partial x_1} + 2x_1 = 0, \\
\frac{\partial f}{\partial x_i} &= 2f_i + 2f_{i+1} \frac{\partial f_{i+1}}{\partial x_i} = 0, \quad i = 2, \ldots, n - 1, \\
\frac{\partial f}{\partial x_n} &= 2f_n = 0.
\end{aligned}
$$

(8.2)

Observe that if $f_{i+1}(x) = 0$ then $2f_{i+1} \frac{\partial f_{i+1}}{\partial x_i}(x) = \frac{\partial f_{i+1}^2}{\partial x_i}(x) = 0$. So (8.2) reduces to a very simple system

$$
\begin{aligned}
x_1 &= 0 \\
f_i &= 0, \quad i = 2, \ldots, n,
\end{aligned}
$$

(8.3)

So $a = (0, T_d(0), T_d(T_d(0)), \ldots) = (0, \ldots, 0)$ is the only critical point of f. \hfill \Box

9. Bounds for Trajectories of Gradients of Quasipolynomials

Our method can give an explicit bound for the length of trajectories of gradients in many other cases. For instance, by Khovanskii’s theory [Kh], for exponential polynomials or trigonometric polynomials. Let us first recall Khovanskii’s definition of quasipolynomials and trigonometric quasipolynomials.

Definition 9.1. Let P be a polynomial of degree d in $n + k$ variables and let $a_1, \ldots, a_k \in \mathbb{R}^n$. Then the function f defined by $f(x) = P(x, y_1, \ldots, y_k)$ and $y_j = \exp(a_j, x)$ for $j = 1, \ldots, k$ is called a quasipolynomial of degree d.

Let $a_1, \ldots, a_k \in \mathbb{R}^k$ and P_1, \ldots, P_n be polynomials in $n + k$ variables of degree $\deg P_i = d_i$. Let f_1, \ldots, f_n be the corresponding quasipolynomials. Then Khovanskii proved the following

Theorem 9.2. ([Kh] §1.2) The number of nondegenerate solutions of $f_1 = \cdots = f_n = 0$ is finite and at most $d_1 \cdots d_n (\sum d_i + 1)^{k^{(k-1)/2}}$.

Let f be a quasipolynomial of degree d in n variables and k exponentials. Assume that n and d are greater or equal to 2. Note that the function f is definable in \mathbb{R}_{\exp}, and if $k = 0$, then f satisfies the hypotheses of theorem 7.10. So we may assume that $k \geq 1$. Using theorem 9.2 we can compute a bound for the length of the trajectories of ∇f inside a ball of radius r. Thus, we have the following
Theorem 9.3. Let f be a quasipolynomial of degree d in n variables and k exponentials. The length of any trajectory of ∇f in a ball of radius r is bounded by

$$r \nu(n)[(3d)^{n-1}(3d(n-1) + 2)^k + 2(3d+1)^{n-2}((3d+1)(n-2) + 3)^k]^{\frac{k(k-1)}{2}}.$$

Proof. As in section 7 we define $\Theta_1(f)$ and $\Theta_2(f)$ as the set of points at which the level sets of the functions $|\nabla f|^2$ and f are tangents. Again, a deformation of f by quadratic polynomials proves that for almost all f the sets $\Theta_1(f)$ and $\Theta_2(f)$ are either empty or consist of a finite union of definable (in \mathbb{R}_{\exp}) curves and points. Note that in this case the coefficients of ∇f and of the Hessian H_f are exponential polynomials of degree less or equal to d. Thus the coefficients of the 2-form $d(\nabla f^2) \wedge df$ are also exponential polynomials of degree less or equal to $3d$. Similarly, the degree of the coefficients of $d(\nabla f^2) \wedge df \wedge dr$ does not exceed $3d+1$. Theorem 9.2 implies that the number of nondegenerate intersection points of $\Theta_1(f)$ with a generic hyperplane $H \subset \mathbb{R}^n$ is bounded by

$$N_1(k, n, d) = (3d)^{n-1}(3d(n-1) + 2)^k 2^{\frac{k(k-1)}{2}}.$$

Similarly the number of nondegenerate intersection points of $\Theta_2(f) \cap H$ is bounded by

$$N_2(k, n, d) = 2(3d+1)^{n-2}((n-2)(3d+1) + 3)^k 2^{\frac{k(k-1)}{2}}.$$

At this point, it suffices to follow the proofs of theorems 7.7 and 7.10 to complete the proof of corollary 9.3. \qed

Let us continue with Khovanskiĭ’s theory. We extend our computations to a more general class of function. We shall now consider trigonometric quasipolynomials. According to [Kh] we have the following definition

Definition 9.4. Let P be a polynomial of degree d in $n+k+2p$ variables and let $a_1, \ldots, a_k, b_1, \ldots, b_p \in \mathbb{R}^n$. Then the function f defined by

$$f(x) = P(x, y_1, \ldots, y_k, u_1, \ldots, u_p, v_1, \ldots, v_p)$$

where $y_j = \exp(a_j, x)$ for $j = 1, \ldots, k$ and $u_q = \sin(b_q, x)$, $v_q = \cos(b_q, x)$ for $q = 1, \ldots, p$ is called a trigonometric quasipolynomial of degree d.

If f be a trigonometric quasipolynomial of degree d in $n+k+2p$ variables, then the restriction of f to a ball of radius r is definable in $\mathbb{R}_{\text{an,exp}}$, the o-minimal structure of globally subanalytic sets augmented with the exponential function. Note that in general f, as a function defined on \mathbb{R}^n, is not definable in any o-minimal structure. Let $a_1, \ldots, a_k \in \mathbb{R}^n$, $b_1, \ldots, b_p \in \mathbb{R}^n$ and P_1, \ldots, P_n be polynomials in $n+k+2p$ variables of degree $\deg P_i = d_i$. Let f_1, \ldots, f_n be the corresponding trigonometric polynomials. The following theorem gives a bound on the number of roots of a system of trigonometric quasipolynomial.

Theorem 9.5. ([Kh] §1.3) If $|\langle b_q, x \rangle| < \frac{\pi}{2}$, then the number of nonsingular solutions of $f_1 = \cdots = f_n = 0$ is finite and at most

$$d_1 \cdots d_n (\sum d_i + 1 + p)^{p+k} 2^{\frac{(p+k)(p+k-1)}{2}}.$$
Note that the assumptions of theorem 9.5 are more restrictive than those of theorem 9.2. In order to apply our method of computation for the trigonometric quasipolynomials, we thus need to strengthen the hypotheses. Consider the semialgebraic set $\mathcal{B} = \{ b \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, |\langle b, x \rangle| < \frac{\pi}{2} \}$. Let $a_1, \ldots, a_k \in \mathbb{R}^n$ and $b_1, \ldots, b_p \in \mathcal{B}$ and P be a polynomial in $n + k + 2p$ variables of degree d. Let f be the corresponding trigonometric quasipolynomial then we have the following

Theorem 9.6. Let f be a trigonometric quasipolynomials in $n + k + 2p$ variables with $b \in \mathcal{B}$. The length of any trajectory of ∇f in the unit ball is bounded by

$$\nu(n) \left[(3d)^{n-1}M_1 + 2(3d+1)^{n-2}M_2 \right] 2^{p+\frac{p+k(p+k-1)}{2}},$$

where $M_1 = (3d(n-1) + 2 + p)^{p+k}$ and $M_2 = ((3d+1)(n-2) + 3 + p)^{p+k}$.

10. Application I: Joining two points in a connected semialgebraic set

by Krzysztof Kurdyka

To the memory of Gérard Favre

In many situations e.g. robotics or qualitative transversality (see [Do]) it is important to find a path joining two points x, y in a given connected component A of a semialgebraic set in \mathbb{R}^n. The usual manner it is done (see Yomdin [Yo1], [Yo-C]; Canny [Ca1], [Ca2], Donaldson [Do], Bassu-Pollack Roy [B-P-R]) is the following: one first constructs so called "roadmap" i.e. a connected semialgebraic curve $C \subset A$ in such a way that it is easy to join each point of A with the curve C. Since C is arc-connected we can join x with y via C. Actually the path constructed is semi-algebraic. The construction of C is in general hard and not efficient; one applies induction on n which requires several quantifiers eliminations. There are several algorithms to compute a roadmap, but they don't give a realistic estimate for the length of path in terms of n and degrees of polynomials involved in a description of A. This is due to the fact the the description of C is very complex.

We propose below a new way of joining two points in a semialgebraic set A which is a connected component of $\{f > 0\} \cap B(r)$, where f is a polynomial of degree d and $B(r)$ is a ball of radius r in \mathbb{R}^n. We will show that for a generic f we can join in A any two points of A by a curve which is piecewise trajectory of ∇f or of $-\nabla f$.

Examining carefully our proof of theorem 7.7 we will show that any two points in A may be joined in A by a curve of the length bounded by $2rA(n, d+2)$. It seems that from the numerical point of view this method is very promising. In fact there are quite efficient algorithms which compute numerically trajectories of gradients.

Let A be a connected and semialgebraic subset of \mathbb{R}^n. For any pair of points $x, y \in A$ we denote by $d_g(x, y)$ the infimum of lengths (for the Euclidean metric) of arcs joining, in A, x with y. Clearly $d_g(x, y) < \infty$, since A is semialgebraic. In fact d_g is a distance on A. We call

$$\text{diam}_g(A) = \sup_{x,y \in A} d_g(x, y)$$

the geodesic diameter of the set A.

We now explain the context of our work. First we recall the following result of Yomdin [Yo1],[Yo-C]

Theorem 10.1. Let $A \subset \mathbb{R}^n$ be a semialgebraic set. Then, for any ball $B(r)$ of radius r in \mathbb{R}^n, the geodesic diameter of every connected component of $A \cap B(r)$ is bounded by rK. The constant $K = K(D)$ depends only on D the diagram of A that is: dimension n and the number and degrees of polynomials describing A.

In particular for any integers d,n there exists a constant $K(n,d)$, such that if $f : \mathbb{R}^n \to \mathbb{R}$ is polynomial of degree d, then the geodesic diameter of every connected component of $\{f > 0\} \cap B(r)$ is bounded by $rK(n,d)$.

The construction of arcs joining two points in a connected component of $A \cap B(r)$ proposed by Yomdin (also by other authors in a more general setting, see references
to Theorem 1.1 in [Yo-C]) gives a semialgebraic arc of "bounded complexity" or in other words of controlled diagram and its length can be estimated by Cauchy-Crofton formula. However it does not give any realistic bound for \(K \), in particular for \(K(n,d) \).

S. K. Donaldson in his famous paper [Do] on existence of symplectic submanifolds used in a crucial way the above special case of Theorem 10.1. In fact what he needed (and what he proved in [Do]) was the following:

Theorem 10.2. For any integer \(n \) there exists \(C(n) > 0 \) and \(k(n) > 0 \) such that
\[
K(n,d) \leq C(n)d^{k(n)}, \quad \text{for any } d \in \mathbb{N}.
\]

A thorough examination of his construction can give explicit estimates, but still far from realistic. In fact the two mentioned above theorems were used by the authors to obtain a qualitative version of the Morse-Sard theorem, and next by S. K. Donaldson in his famous paper [Do] on existence of symplectic submanifolds (and what he proved in [Do]) was the following:

Theorem 10.3. Let \(f : \mathbb{R}^n \to \mathbb{R} \), with \(n \geq 2 \), be a polynomial of degree \(d \geq 2 \) and let \(B(r) \) be a ball of radius \(r \) in \(\mathbb{R}^n \). Let \(D_i, i \in I \) be all connected components of \(\{ f > 0 \} \cap B(r) \). Then
\[
\sum_{i \in I} \text{diam}_g(D_i) \leq 2rA(n,d + 2),
\]
where \(A(n,d) = \nu(n)((3d - 4)^{n-1} + 2(3d - 3)^{n-2}) \) is the constant of theorem 7.10. In particular \(\text{diam}_g(D_i) \leq 2rA(n,d + 2) \) for any connected component \(D_i \). More precisely, there is a polynomial \(g \) of degree \(d+2 \) such that any two points in \(D_i \) can be joined in \(D_i \) by an arc which is a piecewise trajectory of \(\nabla g \) or \(-\nabla g\) of length not greater than \(2rA(n,d + 2) \).

Proof. Let us fix a ball \(B(r) = B(x_0, r) = \{ x \in \mathbb{R}^n; |x - x_0|^2 < r \} \) and put
\[
g(x) = (r - |x - x_0|^2)f(x).
\]
Then any connected component of \(\{ f > 0 \} \cap B(r) \) is a connected component of \(\{ g > 0 \} \). Of course \(g \) is a polynomial of degree \(d + 2 \).

Clearly it is enough to prove the theorem for generic polynomials of degree \(d + 2 \). So we assume that \(g \) has only isolated nondegenerate critical points \(c_1, \ldots, c_k \) in the ball and moreover that the corresponding critical values \(y_j = g(c_j), j = 1, \ldots, k \) are distinct. In other words we assume that \(g \) is a Morse function with distinct critical values.

Let \(x, y \) be two points in \(D_i \) a connected component of \(\{ g > 0 \} \). We outline first a general idea of the construction of an arc joining \(x \) with \(y \) in \(D_i \).

We may assume that \(\nabla g(x) \neq 0 \), if not we slightly move \(x \). We take the trajectory \(\lambda_1 : [0, a_1) \to D_i \) of \(\nabla g \) starting at \(x \), that is \(\lambda_1(0) = x \) and \(\lambda_1'(t) = \nabla g(\lambda_1(t)) \). We consider \(\lambda_1(t) \) maximal (to the right), hence
\[
\lim_{t \to a_1} \lambda_1(t) = c_{j_1},
\]
where \(c_{j_1} \) is one of the critical points of \(g \). If \(c_{j_1} \) is a local maximum of \(g \) we stop at that point. If not we continue: we take a point \(x_1 \) close to \(c_{j_1} \) and such that \(g(x_1) > y_{j_1} = f(c_{j_1}) \). We can start the trajectory \(\lambda_2 : [a_1, a_2) \to D_i \) of \(\nabla g \) such
In particular, if we have a trajectory not greater than $2\text{length}(\Gamma \cap D_i)$, then, as we already explained above, we can join (in A_i^1) any point of A_i^1 to the maximum of g in A_i^1, by a trajectory of ∇g. So by Proposition 10.4 we can join any two points in A_i^1 by a curve whose length is not greater than $2\text{length}(\Gamma \cap A_i^1)$.

In the general case we will proceed by induction on the number of critical points of g in A_i^1.

Recall that g has only Morse singularities which we denote by c_j, $j = 1, \ldots, k$.

Let us fix $0 < t < s$ and assume that the interval (t, s) contains only one critical value y_j. Assume also that the component A_i^1 contains the critical point c_j such that $g(c_j) = y_j$. Note that there are most two connected components of $\{g > s\}$
contained in A_1^i, since g has a Morse singularity at c_j. Let us denote them by A_1^s and A_2^s and suppose that at least A_1^s is non-empty. We will take $s > y_j$ but very close to y_j.

Take two points $x, y \in A_i^1$. We shall consider several cases.

Case 1. Assume $g(x) < y_j$ and $g(y) < y_j$. We take the trajectory λ_x of ∇g starting at the point x and ending at a point x' such that $g(x') = s$. If the trajectory passes by the critical point c_j we extend it starting from this point. Note that c_j is not a local maximum of g, so we can pass over the level $\{g = y_j\}$. (At this point we could also take an arbitrary short segment joining a point on trajectory at which $g < y_j$ with a point at which $g > y_j$).

In the same way we take the trajectory λ_y of ∇g starting at the point y and ending at a point y' such that $g(y') = s$. Note that by Proposition 10.4 we have

\begin{equation}
(10.1) \quad \text{Length}(\lambda_x) + \text{Length}(\lambda_y) \leq 2\text{Length}(\Gamma \cap A_i^1 \cap g^{-1}(t, s)).
\end{equation}

Case 1.1. If x' and y' belong to the same component A_1^1 or A_2^1, then by our induction hypothesis we can join x' with y' in A_1^1, respectively in A_2^1, by a piecewise trajectory of ∇g of the length at most $2\text{Length}(\Gamma \cap A_i^1)$, respectively at most $2\text{Length}(\Gamma \cap A_i^2)$. Hence, by (10.1) the total length of the curve joining x with y in A_i^1 is not greater than $2\text{Length}(\Gamma \cap A_i^1)$ as claimed in Lemma 10.5.

Case 1.2. Assume now that $x' \in A_1^1$ and $y' \in A_2^s$. By induction hypothesis we can join, in A_1^1, x' with a point x'' very close to c_j. Respectively we can join, in A_2^s, y' with a point y'' very close to c_j. Note that the total length of both curves is not greater

$$2\text{Length}(\Gamma \cap A_1^1) + \text{Length}(\Gamma \cap A_2^s)$$

Finally we can join, in A_i^1, the point x'' with y'' by a short segment (or, via c_j by a short piece of a trajectory of ∇g). So again, by (10.1), we deduce that the total length of the curve joining x with y in A_i^1 is not greater than $2\text{Length}(\Gamma \cap A_i^1)$ as claimed in Lemma 10.5.

The remaining cases where $g(x) < y_j$ and $g(y) > y_j$ or $g(x) > y_j$ and $g(y) > y_j$ can be handled analogously. So Lemma 10.5 follows.

Taking $t = 0$ in Lemma 10.5 we obtain Theorem 10.3.

We complete this section by an example based on the one proposed in part 8. Let us fix integers d and n, we will denote by $D_g(d, n)$ the supremum of geodesic diameters of connected components, included in a unit ball in \mathbb{R}^n, of sets $\{f > 0\}$, where f is a polynomial of degree d. We will now show that

Theorem 10.6. For any $n, d \in \mathbb{N}$,

$$D_g(d, n) \geq n^{-1/2}(2d)^{n-1}, \quad d \in \mathbb{N}.$$

Proof. Let T_d be the d-th Chebyshev polynomial (of the first kind) defined in part 8. Recall that the length of the graph of T_d restricted to $[-1, 1]$, is greater than $2d$.

Now return to the construction in \mathbb{R}^n, and as before define

$$p_{d,n}(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n-1} (x_{i+1} - T_d(x_i))^2.$$

which is a polynomial of degree $2d$ in n variables. The zero set of $p_{d,n}$ is a smooth curve which is the intersection of the hypersurfaces $\{x_{i+1} = T_d(x_i)\}$, for
$i = 1, \ldots, n - 1$. Note that the length of the curve $p_{d,n}^{-1}(0) \cap [−1, 1]^n$ is at least $(2d)^{n-1}$. Now choose an $\varepsilon > 0$ small enough and put

$$\hat{P}_{d,n}(x) = p_{d,n}(x) - \varepsilon(n - |x|^2).$$

Note that the set $\{\hat{P}_{d,n} > 0\}$ is a thin neighborhood of the curve $p_{d,n}^{-1}(0) \cap B(0, \sqrt{n})$, so its geodesic diameter is almost equal to the length of $p_{d,n}^{-1}(0) \cap B(0, \sqrt{n})$ which is at least $(2d)^{n-1}$. Finally, to obtain desired semialgebraic set in the unit ball we put $P_{d,n}(x) = \hat{P}_{d,n}(n^{-1/2}x)$, so Theorem 10.6 holds. \qed
11. Application II: Quantitative Morse-Sard Theorem

by Krzysztof Kurdyka

Let us first recall, previously mentioned, quantitative version of Morse-Sard theorem due to Yomdin [Yo2].

Theorem 11.1. Let $B(r)$ be a ball of radius r in \mathbb{R}^n, and let $f: B(r) \to \mathbb{R}$ be the restriction of a polynomial of degree d. For any $\varepsilon > 0$ we put $\Sigma_\varepsilon = \{x \in B(r); |\nabla f(x)| < \varepsilon\}$. Then the set $f(\Sigma_\varepsilon)$ can be covered by $N(n, d)$ segments of length $r\varepsilon$. The number $N(n, d)$ depends only on dimension n and degree d.

This entropic version of Morse-Sard theorem has the advantage of being stable under small smooth perturbations and has many applications, see [Yo2], [Yo-C]. Another important application appears in a paper of Donaldson [Do], it is so-called controlled transversality (in fact this notion goes back to Gromov). Indeed theorem 11.1 allows to find a ball of controlled radius in the set of regular values of f. Yomdin insisted in [Yo2] that for most actual applications it is important to have an explicit and realistic estimate for the number $N(n, d)$. Actually he stated in [Yo2] an explicit estimate in the case $n = 2$ which was $N(2, d) \leq \frac{2d^2 + 15d}{4} + 3$, but for general n no such estimate was known.

The usual way to prove Theorem 11.1 is to apply Theorem 10.1 in the following way. We consider the set

$$\Sigma_\varepsilon = \{x \in B(r); |\nabla f|^2 < \varepsilon^2\} = B(r) \cap \{p > 0\},$$

where $p(x) = \varepsilon^2 - |\nabla f(x)|^2$. Clearly p is of degree $2(d - 1)$. Let A_i be a connected component of Σ_ε. Note that $f(A_i)$ is a segment in \mathbb{R}, assume that $\int f(A_i) = [\alpha_i, \beta_i]$. Let us take points $x_i, y_i \in A_i$ such that $f(x_i)$ is very close to α_i and $f(y_i)$ is very close to β_i. Let λ_i be a piece-wise smooth arc, constructed according to Theorem 10.3, joining x_i with y_i in A_i. So we may assume that $f(\lambda_i) = [\alpha_i, \beta_i]$. By the Mean Value Theorem we obtain that

$$\beta_i - \alpha_i = \text{Length } (f(\lambda_i)) \leq \varepsilon\text{Length } (\lambda_i).$$

Recall that by Theorem 10.3 the total length of all λ_i is not greater $2rA(n, 2d)$. Note that each connected component of Σ_ε is actually a connected component of $\{\bar{p} > 0\}$, where $\bar{p}(x) = p(x)(r^2 - |x - x_0|^2)$. Here x_0 is the center of the ball $B(r)$. The classical bounds for the topology of semi-algebraic sets (cf. [Mi], see also [Yo-C]) yields that the number of bounded connected components of $\{\bar{p} > 0\}$ is at most

$$B(n, d) = \frac{1}{2}(\deg \bar{p})(\deg \bar{p} - 1)^{n-1} = d(2d - 1)^{n-1}.$$

So we have at most $B(n, d)$ segments of the total length not greater $\varepsilon r 2A(n, 2d)$, so they can be covered by $B(n, d) + 2A(n, 2d)$ intervals of length εr. Thus we obtained the following estimate

$$(11.1) \quad N(n, d) \leq d(2d - 1)^n + 2r(n)((6d - 4)^n - 1 + 2(6d - 3)^{n-2}).$$

This is a first (to our knowledge) explicit bound for $N(n, d)$, note that $N(n, d) \geq (d - 1)^n$ since there are real polynomials of degree d which have $(d - 1)^n$ critical values.

We will give now a better estimate for $N(n, d)$ based on a direct analysis of the curve Γ associated in section 7 to a generic polynomial of degree d. Recall that
the curve Γ contains all local minima of $|\nabla f|$ on fibers of f restricted to $\overline{B(r)}$. By abuse of notation we denote $\Sigma_\varepsilon = \{ x \in \overline{B(r)} : |\nabla f(x)| < \varepsilon \}$ which is slightly bigger than the set in the Theorem 11.1 because we also take into account the boundary of $B(r)$.

Note that, if $t \in f(\Sigma_\varepsilon)$, then $\inf\{|\nabla f(x)|; x \in f^{-1}(t) \cap \overline{B(r)}\} < \varepsilon$, hence

$$f^{-1}(t) \cap \Gamma \cap \Sigma_\varepsilon \neq \emptyset.$$

Consequently

$$f(\Sigma_\varepsilon) = f(\Gamma \cap \Sigma_\varepsilon).$$

By Theorem 7.10 we know that the total length of $\Gamma \cap \overline{B(r)}$, hence also of $\Gamma \cap \Sigma_\varepsilon$, is bounded by $rA(n,d)$. So the total length of $f(\Sigma_\varepsilon)$ is not greater than $\varepsilon rA(n,d)$. We showed above that the number of connected components of $f(\Sigma_\varepsilon)$ is bounded by $B(n,d) = \frac{1}{2}(2d)(2d-1)^{n-1}$. Thus we have a better bound

$$(11.2) \quad N(n,d) \leq d(2d-1)^{n-1} + \nu(n)((3d-4)^{n-1} + 2(3d-3)^{n-2}).$$

REFERENCES

