
Fluid Dynamics I PROBLEM SET 9 Due by the last class.

1. Consider the uniform slow motion with speed U of a viscous fluid past a spherical bubble of radius
a, filled with air. Do this by modifying the Stokes flow analysis for a rigid sphere as follows. The no slip
condition is to be replaced on r = a by the condition that both ur and the tangential stress σrθ vanish. (This
latter condition applies since there is no fluid within the bubble to support this stress.) Show in particular
that
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and that the drag on the bubble is D = 4πµUa. Note: On page 235 of Batchelor see the analysis for a
bubble filled with a second liquid of viscosity µ̄. The present problem is for µ̄ = 0.

2. Consider two-dimensional Stokes flow past a circular cylinder of radius a. Show that the problem
reduces to the biharmonic equation for the two-dimensional stream function ψ,(
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with conditions ∂ψ/∂r = ∂ψ/∂θ = 0 on r = a and ψ ∼ Ur sin θ as r → ∞. Seeking a solution of the form
f(r) sin θ, show that this leads to

f = Ar3 +Br log r + Cr +D/r

and hence that there is no solution of the required form. This is Stokes’ Paradox, as discussed in class.

3. Construct a set of solutions of the Stokes equations in three dimensions, having the form

ui = εijk
∂χ

∂xj
Ωk

where εijk = ±1 for ijk and even (odd) permulation of 123 and is otherwise = 0, and Ωk is a constant vector.
What is the corresponding pressure field, if we assume that p must vanish at infinity? Use the form to find
the flow field generated by a rigid sphere of radius a spinning with angular velocity Ωk in a very viscous
fluid, such that u = 0 at infinity. Show that the torque exerted by sphere on fluid is 8πΩa3µ. (Solutions of
the above form, together this those given in class, form a complete set of Stokes flows in three dimensions.)

4. Prove that Stokes flow past a given, rigid body is unique, as follows. Show if p1,u1 and p2,u2 are
two solutions of

∇p− µ∇2u = 0,∇ · u = 0,

satisfying ui = −Ui on the body and

u ∼= O(1/r),
∂ui
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as r → ∞, then the two solutions must agree. (Hint: Consider the integral of ∂/∂xi(wj∂wj/∂xi) over the
region exterior to the body, where w = u1 − u2.)

5. Two small spheres of radius a and density ρs are falling in a viscous fluid with centers at P and Q.
The line PQ has length L � a and is perpendicular to gravity. Using the Stokeslet approximation to the
Stokes solution past a sphere, and assuming that each sphere sees the unperturbed Stokes flow of the other
sphere, show that the spheres fall with the same speed

U ≈ Us(1 + ka/L+O(a2/L2)),

and determine the number k. Here Us = 2a2g/9ν(ρs/ρ− 1) is the settling speed of a single sphere in Stokes
flow.


