1. (a) If $f, g$ are two twice differentiable functions in a domain $D$, prove Green's identity

$$
\int_{D} f \nabla^{2} g=g \nabla^{2} f d V=\int_{\partial D} f \frac{\partial g}{\partial n}-g \frac{\partial f}{\partial n} d S
$$

(b) Let $D$ be the a sphere of radius $R_{0}$ at the origin, $f$ a harmonic function in $D$, and $g=\frac{1}{4 \pi}\left(\frac{1}{R_{0}}-\frac{1}{R}\right)$ where $R^{2}=x^{2}+y^{2}+z^{2}$. Using the fact that $\nabla^{2} \frac{1}{R}=-4 \pi \delta(\mathbf{x}), \delta=$ delta function, show that the average of a harmonic function over a sphere is equal to the value of the function at the center of the sphere (here $f(0))$.
2. In the Butler sphere theorem, we needed the following result: Show that $\Psi_{1}(R, \theta) \equiv \frac{R}{a} \Psi\left(\frac{a^{2}}{R}, \theta\right)$ is the streamfunction of an irrotational, axisymmetric flow in spherical polar cordinates, provided that $\Psi(R, \theta)$ is such a flow. (Hint; Show that $L_{R} \Psi_{1}(R, \theta)=L_{R_{1}} \Psi\left(R_{1}, \theta\right)$, where $R_{1}=a^{2} / R$. Here $L_{R} \Psi=$ $\left.R^{2} \frac{\partial^{2} \Psi}{\partial R^{2}}+\sin \theta \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial \Psi}{\partial \theta}\right).\right)$
3. Show that in spherical polar coordinates, the streamfunction $\Psi$ for a source of strength $Q$, placed at the origin, normalized so that $\Psi=0$ on $\theta=0$, is given by $\Psi=\frac{Q}{4 \pi}(1-\cos \theta)$. (Recall $u_{R}=\frac{1}{R^{2} \sin \theta} \frac{\partial \Psi}{\partial \theta}, u_{\theta}=$ $\frac{-1}{R \sin \theta} \frac{\partial \Psi}{\partial R}$.) Find the streamfunction in spherical polars for the airship model consisting of equal source and sink of strength $Q$, the source at the origin and the sink at $R=1, \theta=0$, in a uniform stream with streamfunction $\frac{1}{2} U R^{2} \sin \theta^{2}$. The sink will thus involve the angle with respect to $R=1, \theta=0$. Use the law of cosines $\left(c^{2}=a^{2}+b^{2}-2 a b \cos \theta\right.$ for a triangle with $\theta$ opposite side $\left.c\right)$ to express $\Psi$ in terms of $R, \theta$.
4. (a) Show that the complex potential $w=U e^{i \alpha} z$ determines a uniform flow making an angle $\alpha$ with respect to the $x$-axis and having speed $U$.
(b) Describe the flow field whose complex potential is given by

$$
w=U z e^{i \alpha}+\frac{U a^{2} e^{-i \alpha}}{z}
$$

5. Recall the following rule for the motion of point vortices in two dimensions: Each vortex moves with the velocity equal to the sum over the velocities contributed by all other vortices, at the point in question. That is, now using the complex potential.

$$
d z_{k}(t) / d t=\overline{w^{\prime}\left(z_{k}\right)}, w_{k}=\sum_{j=1, j \neq k}^{N} \gamma_{j} \log \left(z-z_{j}(t)\right), \gamma=-i \Gamma / 2 \pi
$$

where the strengths are $\gamma_{i}$ and the positions are $z_{i}(t)$. (a) Using this rule, show that two vortices of equal strengths rotate on a circle with center at the midpoint of the line joining them, and find the speed of their motion in terms of $\gamma$ and the separation distance.
(b) Show that two vortices of strengths $\gamma$ and $-\gamma$ move together on straight parallel lines perpendicular to the line joining them. Again find the speed of their motion in terms of $\gamma$ and separation distance.

