1 The Black-Scholes Formula for a European Call or Put

Recall:

\[V(f) = e^{-r(T-t)} \mathbb{E}_{RN}[f(S_T)] \]

where the expectation is taken with respect to the risk-neutral measure.

In a risk-neutral world, the stock price dynamics is

\[S_T = S_t e^{(r-\frac{1}{2}\sigma^2)(T-t)+\sigma\sqrt{T-t}Z}, \quad Z \sim \mathcal{N}(0, 1) \]

or equivalently

\[\log \left(\frac{S_T}{S_t} \right) \sim \mathcal{N}\left(\left(r - \frac{1}{2}\sigma^2 \right)(T-t), \sigma^2(T-t) \right) \]

Note that \(f(S_T) \) is the payoff, a known function of \(S_T \), e.g.,

1.1 Evaluation of European Options

Evaluation of a European Call/Put at \(t = 0 \). Let us quote the results first:

\[c[S_0, T, K] = S_0 N(d_1) - Ke^{-rT} N(d_2), \]
\[p[S_0, T, K] = Ke^{-rT} N(-d_2) - S_0 N(-d_1) \]

where

\[N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy \]

\[d_1 = \frac{1}{\sqrt{\sigma^2 T}} \log \left(\frac{S_0 e^{(r+\frac{1}{2}\sigma^2) T}}{K} \right) \]
\[d_2 = \frac{1}{\sqrt{\sigma^2 T}} \log \left(\frac{S_0 e^{(r-\frac{1}{2}\sigma^2) T}}{K} \right) \]
Note that
\[d_2 = d_1 - \sqrt{\sigma^2 T} \]

First, let us evaluate the expectation of the following function
\[
f(x) \equiv \begin{cases} e^{ax}, & x \geq k \\ 0, & \text{otherwise} \end{cases}
\]
where \(X \) is a Gaussian-distributed random variable with mean \(m \) and variance \(\sigma^2 \):
\[
E[f(x)] = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}} dx
\]
\[
= \frac{1}{\sqrt{2\pi \sigma^2}} \int_k^\infty e^{ax} e^{-\frac{(x-m)^2}{2\sigma^2}} dx
\]
Complete the square:
\[
ax - \frac{(x-m)^2}{2\sigma^2} = am + \frac{1}{2} a^2 \sigma^2 - \frac{[x - (m + a\sigma^2)]^2}{2\sigma^2}
\]
therefore,
\[
E[f(x)] = e^{am + \frac{1}{2} a^2 \sigma^2} \frac{1}{\sigma' \sqrt{2\pi}} \int_k^\infty e^{-\frac{[x - (m + a\sigma^2)]^2}{2\sigma'^2}} dx
\]
Changing variable,
\[
y \equiv \frac{x - (m + a\sigma^2)}{\sigma'},
\]
yields
\[
E[f(x)] = e^{am + \frac{1}{2} a^2 \sigma^2} \int_{\frac{k - (m + a\sigma^2)}{\sigma'}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy
\]
\[
= e^{am + \frac{1}{2} a^2 \sigma^2} \int_{-\infty}^{-\frac{k - (m + a\sigma^2)}{\sigma'}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy \quad \text{(even-symmetry of a Gaussian)}
\]
\[
= e^{am + \frac{1}{2} a^2 \sigma^2} N\left(-\frac{k - (m + a\sigma^2)}{\sigma'}\right)
\]

Therefore, we have
\[
E[f(x)] = e^{am + \frac{1}{2} a^2 \sigma^2} N\left(d\right), \quad d \equiv \frac{-k + m + a\sigma^2}{\sigma'} \quad (1)
\]
1.1.1 European Call

Applying Eq. (1) to a European call:

\[V (f) = e^{rT} \int_{-\infty}^{\infty} (S_0 e^x - K) + \frac{1}{\sqrt{2\pi\sigma^2 T}} e^{-\frac{(x-(r-\frac{1}{2}\sigma^2)T)^2}{2\sigma^2 T}} dx \]

Note that

\[S_0 e^x - K \geq 0 \implies x > \log \frac{K}{S_0} \]

1. For the first term in the payoff, i.e., \(S_0 e^x \), we use the result above with

\[a = 1, \quad k = \log \frac{K}{S_0}, \quad m = \left(r - \frac{1}{2} \sigma^2 \right) T, \quad \sigma'^2 = \sigma^2 T \]

therefore,

\[e^{-rT} \int_{k}^{\infty} S_0 e^x \frac{1}{\sqrt{2\pi\sigma'^2 T}} e^{-\frac{(x-(r-\frac{1}{2}\sigma'^2)T)^2}{2\sigma'^2 T}} dx = S_0 e^{-rT} e^{(r-\frac{1}{2}\sigma^2)^T + \frac{1}{2} \sigma^2 T} N (d_1) = S_0 N (d_1) \]

where

\[d_1 = \frac{-\log \frac{K}{S_0} + (r - \frac{1}{2} \sigma^2) T + \sigma^2 T}{\sqrt{\sigma^2 T}} \]

\[= \frac{1}{\sqrt{\sigma^2 T}} \log \left[\frac{S_0 e^{(r+\frac{1}{2}\sigma^2)T}}{K} \right] \]

2. For the 2nd term (i.e., -K), choose

\[a = 0, \]

then,

\[e^{-rT} \int_{k}^{\infty} K \frac{1}{\sqrt{2\pi\sigma'^2 T}} e^{-\frac{(x-(r-\frac{1}{2}\sigma'^2)T)^2}{2\sigma'^2 T}} dx = K e^{-rT} N (d_2) \]

where

\[d_2 = \frac{-\log \frac{K}{S_0} + (r - \frac{1}{2} \sigma^2) T}{\sqrt{\sigma^2 T}} \]

\[= \frac{1}{\sqrt{\sigma^2 T}} \log \left[\frac{S_0 e^{(r+\frac{1}{2}\sigma^2)T}}{K} \right] \]

Therefore,

\[c (S_0, T, K) = S_0 N (d_1) - K e^{-rT} N (d_2) \]
1.1.2 European Put

How to evaluate a put? Use the put-call parity

\[p - c = Ke^{-rT} - S_0 \]

Therefore,

\[
p(S_0, T, K) = c(S_0, T, K) + Ke^{-rT} - S_0 \\
= S_0 N(d_1) - S_0 + K e^{-rT} - K e^{-rT} N(d_2) \\
= -S_0 (1 - N(d_1)) + K e^{-rT} (1 - N(d_2)) \\
= -S_0 N(-d_1) + K e^{-rT} N(-d_2)
\]

Hence

\[p(S_0, T, K) = Ke^{-rT} N(-d_2) - S_0 N(-d_1) \]

Note that the notation \(T \) can be understood as the maturity of the contract counting from the day when the option is setup or it can also be understood as the time-to-maturity — which is, sometimes, emphasized through the notation \(T - t \) with \(T \) being reserved for maturity.

Note that

1. These prices are good as long as the lognormal stock price dynamics is a good model for our market;

2. Parameters in the formula:

\(S_0 \) — the present value of a stock,
\(K \) — Strike,
\(r \) — risk-free interest rate,
\(T \) — maturity or time-to-maturity
\(\sigma \) — volatility

what is the value of \(\sigma \)?
(a) Historical volatility;
(b) Implied volatility — cf. Volatility smile, volatility skew.

Issues:

1. How good is the lognormal dynamics?
2. How to hedge away some of the problem?

2 Hedging

2.1 Hedging in a Binomial World

\[f_0 = f (S_0, t + \delta t) + \left[-rf(S_0, t + \delta t) + rS_0 \frac{\partial f}{\partial S_0} + \frac{1}{2} \sigma^2 S_0^2 \frac{\partial^2 f}{\partial S_0^2} \right] \delta t + o(\delta t) \]

where all the derivatives are evaluated at \(t + \delta t \).

Suppose we misparameterized \(\sigma \):

\[\sigma' = \sigma + \delta \sigma \]

where \(\delta \sigma \) is the error.
Then, the incorrect price for our contingent claim:

\[
f'_0 = f(S_0, t + \delta t) + \frac{\partial f}{\partial \sigma} \delta \sigma + \left[-rf(S_0, t + \delta t) + rS_0 \frac{\partial f}{\partial S_0} + \frac{1}{2} \sigma^2 S_0^2 \frac{\partial^2 f}{\partial S_0^2}\right] \delta t + o(\delta t)
\]

For the purpose of illustrating the idea of hedging, we have assumed \(\delta \sigma \) and \(\delta t \) are of the same order, otherwise, there are further expansions of those derivatives with respect to \(\delta \sigma \). Here, we neglect higher order terms, e.g. \(O(\delta t \delta \sigma) \).

Therefore, the mispriced amount is

\[
\delta f_0 \equiv f'_0 - f_0 \\
\approx \frac{\partial f}{\partial \sigma} \delta \sigma
\]

However, if we have another contingent claim on the same stock to form a portfolio:

\[f + x g, \quad x \text{ — the number of unit of } g\text{-option.} \]

Then the total mispricing will be

\[
\delta (f + xg) \approx \left(\frac{\partial f}{\partial \sigma} + x \frac{\partial g}{\partial \sigma}\right) \delta \sigma
\]

if

\[
\frac{\partial f}{\partial \sigma} + x \frac{\partial g}{\partial \sigma} = 0
\]

i.e.,

\[
x = \frac{\frac{\partial f}{\partial \sigma}}{\frac{\partial g}{\partial \sigma}}
\]

then we can hedge away potential mispricing due to incorrect volatility parameterization to \(O(\delta \sigma) \) — a Vega hedging.

Terminology:

\[
\text{Vega : } V_f \equiv \frac{\partial f}{\partial \sigma}, \quad V_g \equiv \frac{\partial g}{\partial \sigma}
\]

i.e.,

\[
x = \frac{V_f}{V_g}
\]

Question: Have we hedged away all risks yet? Let’s analyze this issue further.

Recall that the replicating portfolio in a risk-neutral valuation is

\[
-f_0 + \Delta f S_0 + B_f = 0
\]

replicating portfolio
in a correctly parameterized world. i.e.,
\[-f_+ + \Delta f S_+ + B_f e^{r \delta t} = -f_- + \Delta f S_- + B_f e^{r \delta t}\]
\[\therefore \Delta f = \frac{f_+ - f_-}{S_+ - S_-}\]

is the amount of stock needed to hedge away the risk

Due to \(\sigma\)-misparameterization:
\[-f_0' + \Delta f_0 S_0 + B'_f = 0 \quad \text{at } t = 0\]

therefore,
\[\Delta f = \frac{f'_+ - f'_-}{S_+ - S_-}\]

where \(f'_+, f'_-\) and \(B'_f\) are computed using \(\sigma'\). So in a time-step \(\delta t\), our risk is

\[\delta \Pi_f = (-f_+ + \Delta f_+ S_+ + B'_f e^{r \delta t}) - (-f_- + \Delta f_- S_- + B'_f e^{r \delta t})\]

\[\uparrow \quad \text{N.B. in the real world, our } f \text{ has to pay } f_+ \text{ rather than } f'_+\]

\[\therefore \delta \Pi_f = -(f_+ - f_-) + \Delta f (S_+ - S_-)\]

\[\therefore \Delta f = \Delta f(\sigma)\]

\[\therefore \Delta f' \approx \Delta f + \frac{\partial \Delta f}{\partial \sigma} \delta \sigma + o(\delta \sigma)\]

therefore,
\[\delta \Pi_f = \underbrace{-(f_+ - f_-) + \Delta f (S_+ - S_-)}_{= 0} + \frac{\partial \Delta f}{\partial \sigma} \delta \sigma (S_+ - S_-)\]

\[\therefore \delta \Pi_f \approx \frac{\partial \Delta f}{\partial \sigma} (S_+ - S_-) \delta \sigma\]

which, in general, is not zero. However,
\[S_+ - S_- \approx O\left(\sigma \sqrt{\delta t}\right)\]

\[\therefore \delta \Pi_f = O\left(\frac{\partial \Delta f}{\partial \sigma} \sigma \sqrt{\delta t} \delta \sigma\right)\]

which contains risks — Either we are content to live with these risks (they could be small or large, depending on the combination of \(\frac{\partial \Delta f}{\partial \sigma} \sigma \delta \sigma\)) or we can try to hedge further — Let’s see how theoretically this can be done. First note that, even for our portfolio
\[f + x g\]
we have
\[\delta \Pi_{f+g} = \delta \Pi_f + \delta \Pi_g = \left(\frac{\partial \Delta f}{\partial \sigma} + x \frac{\partial \Delta g}{\partial \sigma} \right) (S_+ - S_-) \delta \sigma \]
which means there are still risks, i.e. our portfolio \(f + xg \) is not completely \(\Delta \)-neutral.

Now suppose we have another contingent claim on the same stock to form a new portfolio:
\[f + xg + yh \]
we can choose \(x, y \), such that

\[\text{\textit{Vega}-Neutral:} \quad \frac{\partial f}{\partial \sigma} + x \frac{\partial g}{\partial \sigma} + y \frac{\partial h}{\partial \sigma} = 0 \quad \text{i.e.} \quad \mathcal{V}_f + x \mathcal{V}_g + y \mathcal{V}_h = 0 \quad (2a) \]

and \(\Delta \)-Neutral:
\[\frac{\partial \Delta f}{\partial \sigma} + x \frac{\partial \Delta g}{\partial \sigma} + y \frac{\partial \Delta h}{\partial \sigma} = 0 \quad (2b) \]
then we have hedged away potential mispricing and risks due to misparameterization of \(\sigma \).

Importance of being nonlinear: Question: can we use the stock as our third option for hedging, i.e.,
\[h(S_T) = S_T \]

i.e., the stock itself for our option \(h(S) \)? Note that
\[\mathcal{V}_h = \frac{\partial S}{\partial \sigma} = 0 \quad \text{a stock has vanishing Vega} \]
and \(\Delta_h = \frac{\partial S_0}{\partial S} = 1 \quad \left[\text{or } \Delta_h = \frac{S_+ - S_-}{S_+ - S_-} = 1 \right] \]
i.e., a stock has \(\Delta = 1 \)
\[\implies \text{stock } S \text{ is a linear derivative} \]
Can we use the stock itself for our \(h \)?

Since Eqs. (2) now become
\[\frac{\partial f}{\partial \sigma} + x \frac{\partial g}{\partial \sigma} + y \cdot 0 = 0 \]
and \[\frac{\partial \Delta f}{\partial \sigma} + x \frac{\partial \Delta g}{\partial \sigma} + y \cdot 0 = 0 \]
leading to no solution for \(x, \) and \(y \), in general.

The story is just to give you some sense of how issues of hedging arise and how hedging can be done. This simple example illustrates the need for **nonlinear** derivatives for hedging purposes.

Conclusion:
Even if a stock price dynamics is not 100% accurate, as long as it is sufficiently close to the true dynamics — meaning both model specification and model parameterization — then we can use a well-balanced (hedged) portfolio to eliminate most of risks.
2.2 Hedging (General Formulation) — Greeks

2.2.1 Greeks

Portfolio value:

\[\Pi = \Pi (t, S, \sigma, r) \]

where \(t \) is time-to-maturity. Then

\[\delta \Pi = \frac{\partial \Pi}{\partial t} \delta t + \frac{\partial \Pi}{\partial S} \delta S + \frac{\partial \Pi}{\partial \sigma} \delta \sigma + \frac{\partial \Pi}{\partial r} \delta r \]

\[+ \frac{1}{2} \frac{\partial^2 \Pi}{\partial S^2} (\delta S)^2 + \cdots \]

where \(\delta t \) indicates the changing of time. What are the Greeks? They are no more than

- \(\Theta = \frac{\partial \Pi}{\partial t} \)
- \(\Delta = \frac{\partial \Pi}{\partial S} \)
- \(\nu = \frac{\partial \Pi}{\partial \sigma} \)
- \(\rho = \frac{\partial \Pi}{\partial r} \)
- \(\Gamma = \frac{\partial^2 \Pi}{\partial S^2} \)

Note that a portfolio contains, e.g., stocks, calls, puts, etc. each of which has its own corresponding \(\Delta, \Gamma, \text{etc.} \) For example, for a stock,

\[\Delta_S = 1 \]
\[\Gamma_S = 0 \]
\[\nu_S = 0 \]

2.2.2 Greeks for a European Call/Put:

\[\Delta_c = \frac{\partial}{\partial S_0} c(S_0, T, K) = N(d_1) \quad \text{(How to evaluate? HW)} \]

\[\Delta_p = \frac{\partial}{\partial S_0} p(S_0, T, K) = -N(-d_1) = N(d_1) - 1 \]

the second line of which can be seen directly from the put-call parity.

Note that the hedging portfolio in a risk-neutral way would be

\[\Delta_c S_0 - c \]

With changing \(\Delta_c \), one has to rebalance.
\[\Delta := \frac{\partial}{\partial S_0} \] — sensitivity to the change of the stock price.

Call: \[1 \geq N(d_1) \geq 0 \]
Put: \[-1 \leq N(d_1) - 1 \leq 0 \]

\[\Gamma := \frac{\partial^2}{\partial S_0^2} \] — \(\Delta \)-sensitivity to the change of \(S_0 \)

\[\Gamma_c = \frac{1}{S_0 \sqrt{2\pi\sigma^2T}} \exp\left[\frac{-d_1^2}{2}\right] > 0 \]
Put: \[\Gamma_p = \Gamma_c \]

\(\Gamma_p = \Gamma_c \) can be seen directly from the put-call parity.
\[\nu := \frac{\partial}{\partial \sigma} \quad \text{sensitivity to the volatility change} \]

Call: \[V_c = S_0 \sqrt{\frac{T}{2\pi}} \exp \left[-\frac{d_1^2}{2} \right] > 0, \]

Put: \[V_p = V_c \]

again, the relation \(V_p = V_c \) can be seen from the put-call parity.

Note that the Black-Scholes formula assumes a constant \(\sigma \). But, if volatility changes, then rebalance is needed.
\(\Theta := \frac{\partial \varepsilon}{\partial t} \) — sensitivity to "time-to-maturity"

Call : \(\Theta_c = -\frac{S_0 \sigma}{2\sqrt{2\pi} T} \exp \left[-\frac{d_1^2}{2} \right] - r Ke^{-rT} N(d_2) < 0 \)

Put : \(\Theta_p = -\frac{S_0 \sigma}{2\sqrt{2\pi} T} \exp \left[-\frac{d_1^2}{2} \right] + r Ke^{-rT} N(d_2) = \begin{cases} > 0 \\ < 0 \end{cases} \)

What do we mean by sensitivity to "time-to-maturity" since there is nothing uncertain about time after all? Actually this is another way of looking at Gamma \(\Gamma \).

Recall the Black-Scholes PDE:

\[
\frac{\partial f}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + r S \frac{\partial f}{\partial S} - rf = 0
\]

i.e.,

\[
\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma + r S \Delta = rf
\]

(3)

Note that

1. If we need nothing to enter a contract (a portfolio with many options), then

\[
f(0) = 0
\]

If we want to maintain that way, i.e., constant rebalance to ensure \(f = 0 \), then, Eq. (3) yields

\[
\Delta\text{-neutral, } \Theta\text{-neutral } \implies \Gamma\text{-neutral}
\]
2. For a Δ-neutral portfolio, we have
\[\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma = rf \]
then

large, positive $\Theta \implies \text{large, negative Γ}

large, negative $\Theta \implies \text{large, positive Γ}

$\rho := \frac{\partial}{\partial r}$ — sensitivity to the change of interest rate

Call : $\rho_c = TK e^{-rT} N(d_2) > 0$

Put : $\rho_p = -TK e^{-rT} N(-d_2) = TK e^{-rT}[N(d_2) - 1] < 0$

2.2.3 General Hedging:

Δ-Hedge: e.g., n_1 units of an option f_1 on the same stock.

and the portfolio is
\[\Pi_1 = n_1 f_1 + n_s S_0 + B \]

where B stands for the amount of bond. Δ-neutral is
\[\frac{\partial}{\partial S_0} \Pi_1 = 0 \]

i.e.,
\[n_1 \Delta_1 + n_s = 0 \]

which is insensitive to the change of the stock price. Since,
\[n_1 f_1 + n_s S_0 + B = V_1 \]
\[n_1 \Delta_1 + n_s = 0 \]

which are two equations with two unknowns, n_1, n_s, there is no more freedom to hedge other Greeks.
V-Hedge: However, if we have two options f_1, f_2 (on the same stock) with n_1 and n_2 units, respectively, then the value of the portfolio is

$$\Pi_2 = n_1 f_1 + n_2 f_2 + n_s S_0 + B$$

its value is

$$n_1 f_1 + n_2 f_2 + n_s S_0 + B = V_2,$$ \hspace{1cm} (4)

with Δ-neutral position, i.e.,

$$\frac{\partial \Pi_2}{\partial S_0} = 0 \implies n_1 \Delta_1 + n_2 \Delta_2 + n_s = 0$$ \hspace{1cm} (5)

Now we have more freedom for hedging. For example, we can demand $Vega$-neutral, i.e.,

$$\frac{\partial}{\partial \sigma} \Pi_2 = 0 \implies n_1 V_1 + n_2 V_2 = 0$$ \hspace{1cm} (6)

Eqs. (4), (5) and (6) can be solved for the three unknowns, n_1, n_2, n_3 — thus, achieving Δ-neutral and $Vega$-neutral, reducing the exposure to the changes or mis-specification of volatility, etc.

Note that

1. By increasing types of options, we can hedge away other kinds of risks described by other Greeks.

2. Dynamic balancing: Often times Γ and $Vega$ are monitored but not zeroed out. Δ is zeroed out daily by rebalancing shares.

3. There is a difficulty of Γ-neutral and V-neutral — which require **nonlinear** derivatives that are traded at competitive prices.

2.2.4 Speculation using Greeks

Consider only a European call

$$\delta c = \frac{\partial c}{\partial S} \delta S = \Delta \delta S$$

$$\frac{\delta c}{c} = \frac{\Delta}{c} \delta S = \frac{S \Delta \delta S}{c S}$$
If \[\frac{S}{c} \Delta \gg 1 \]
then, a percentage change of stock price \(\delta S/S \) can lead to an appreciably large percentage change of option price.

One can also bet on volatility:

\[
\delta \Pi = \frac{\delta \Pi}{\delta \sigma} \delta \sigma = \nu \delta \sigma \\
\frac{\delta \Pi}{\Pi} = \nu \sigma \frac{\delta \sigma}{\sigma}
\]

If a portfolio is constructed in such a way that

\[\frac{\nu}{\Pi \sigma} \gg 1 \]

then, it is possible to use this portfolio for speculation with high leverage, i.e., a change of volatility is magnified by a factor \(\frac{\nu}{\Pi \sigma} \) in the portfolio price.