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1. Introduction

The role of a dealer in securities markets is to provide

liquidity on the exchange by quoting bid and ask prices

at which he is willing to buy and sell a specific quantity of

assets. Traditionally, this role has been filled by market-

maker or specialist firms. In recent years, with the growth

of electronic exchanges such as Nasdaq’s Inet, anyone

willing to submit limit orders in the system can effectively

play the role of a dealer. Indeed, the availability of high

frequency data on the limit order book (see www.inetats.

com) ensures a fair playing field where various agents can

post limit orders at the prices they choose. In this paper,

we study the optimal submission strategies of bid and ask

orders in such a limit order book.
The pricing strategies of dealers have been studied

extensively in the microstructure literature. The two most

often addressed sources of risk facing the dealer are (i) the

inventory risk arising from uncertainty in the asset’s value
and (ii) the asymmetric information risk arising from
informed traders. Useful surveys of their results can
be found in Biais et al. (2004), Stoll (2003) and a book by
O’Hara (1997). In this paper, we will focus on the
inventory effect. In fact, our model is closely related to a
paper by Ho and Stoll (1981), which analyses the optimal
prices for a monopolistic dealer in a single stock. In their
model, the authors specify a ‘true’ price for the asset,
and derive optimal bid and ask quotes around this price,
to account for the effect of the inventory. This inventory
effect was found to be significant in an empirical study
of AMEX Options by Ho and Macris (1984). In another
paper by Ho and Stoll (1980), the problem of dealers
under competition is analysed and the bid and ask prices
are shown to be related to the reservation (or indifference)
prices of the agents. In our framework, we will assume
that our agent is but one player in the market and
the ‘true’ price is given by the market mid-price.

Of crucial importance to us will be the arrival rate of
buy and sell orders that will reach our agent. In order*Corresponding author. Email: sashastoikov@gmail.com
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to model these arrival rates, we will draw on recent results
in econophysics. One of the important achievements of
this literature has been to explain the statistical properties

of the limit order book (see Bouchaud et al. 2002,
Luckock 2003, Potters and Bouchaud 2003, Smith et al.
2003). The focus of these studies has been to reproduce

the observed patterns in the markets by introducing ‘zero
intelligence’ agents, rather than modelling optimal stra-
tegies of rational agents. One possible exception is the

work of Luckock (2003), who defines a notion of optimal
strategies, without resorting to utility functions. Though
our objective is different to that of the econophysics
literature, we will draw on their results to infer reasonable

arrival rates of buy and sell orders. In particular,
the results that will be most useful to us are the size
distribution of market orders (Maslow and Mills 2001,

Weber and Rosenow 2005, Gabaix et al. 2006) and the
temporary price impact of market orders (Bouchaud et al.
2002, Weber and Rosenow 2005).

Our approach, therefore, is to combine the utility
framework of the Ho and Stoll approach with the

microstructure of actual limit order books as described
in the econophysics literature. The main result is that the
optimal bid and ask quotes are derived in an intuitive

two-step procedure. First, the dealer computes a personal
indifference valuation for the stock, given his current
inventory. Second, he calibrates his bid and ask quotes to

the limit order book, by considering the probability with
which his quotes will be executed as a function of their
distance from the mid-price. In the balancing act between

the dealer’s personal risk considerations and the market
environment lies the essence of our solution.

The paper is organized as follows. In section 2, we
describe the main building blocks for the model: the
dynamics of the mid-market price, the agent’s utility

objective and the arrival rate of orders as a function of
the distance to the mid-price. In section 3, we solve for
the optimal bid and ask quotes, and relate them to the

reservation price of the agent, given his current inventory.
We then present an approximate solution, numerically
simulate the performance of our agent’s strategy
and compare its Profit and Loss (P&L) profile to that

of a benchmark strategy.

2. The model

2.1. The mid-price of the stock

For simplicity, we assume that money market pays no

interest. The mid-market price, or mid-price, of the

stock evolves according to

dSu ¼ �dWu ð1Þ

with initial value St¼ s. Here Wt is a standard one-

dimensional Brownian motion and � is constant.y

Underlying this continuous-time model is the implicit

assumption that our agent has no opinion on the drift or

any autocorrelation structure for the stock.
This mid-price will be used solely to value the agent’s

assets at the end of the investment period. He may not

trade costlessly at this price, but this source of random-

ness will allow us to measure the risk of his inventory in

stock. In section 2.4 we will introduce the possibility to

trade through limit orders.

2.2. The optimizing agent with finite horizon

The agent’s objective is to maximize the expected

exponential utility of his P&L profile at a terminal

time T. This choice of convex risk measure is particularly

convenient, since it will allow us to define reservation

(or indifference) prices which are independent of the

agent’s wealth.
We first model an inactive trader who does not have

any limit orders in the market and simply holds an

inventory of q stocks until the terminal time T.

This ‘frozen inventory’ strategy will later prove to be

useful in the case when limit orders are allowed.

The agent’s value function is

vðx, s, q, tÞ ¼ Et½�expð��ðxþ qSTÞ�,

where x is the initial wealth in dollars. This value function

can be written as

vðx, s, q, tÞ ¼ �expð��xÞ expð��qsÞ exp
�2q2�2ðT� tÞ

2

� �
,

ð3Þ

which shows us directly its dependence on the market

parameters.
We may now define the reservation bid and ask prices

for the agent. The reservation bid price is the price that

would make the agent indifferent between his current

portfolio and his current portfolio plus one stock.

The reservation ask price is defined similarly below.

We stress that this is a subjective valuation from the point

of view of the agent and does not reflect a price at which

trading should occur.

Definition 1. Let v be the value function of the agent.

His reservation bid price rb is given implicitly by the

yWe choose this model over the standard geometric Brownian motion to ensure that the utility functionals introduced in the sequel
remain bounded. In practical applications, we could also use a dimensionless model such as

dSu

Su
¼ �dWu ð2Þ

with initial value St¼ s. To avoid mathematical infinities, exponential utility functions could be modified to a standard mean/
variance objective with the same Taylor-series expansion. The essence of the results would remain. More details regarding the model
(2) with mean/variance utility are given in the appendix.
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relation

vðx� r bðs, q, tÞ, s, qþ 1, tÞ ¼ vðx, s, q, tÞ: ð4Þ

The reservation ask price ra solves

vðxþ raðs, q, tÞ, s, q� 1, t Þ ¼ vðx, s, q, tÞ: ð5Þ

A simple computation involving equations (3), (4) and

(5) yields a closed-form expression for the two prices

r aðs, q, tÞ ¼ sþ ð1� 2qÞ
��2ðT� tÞ

2
ð6Þ

and

r bðs, q, tÞ ¼ sþ ð�1� 2qÞ
��2ðT� tÞ

2
ð7Þ

in the setting where no trading is allowed. We will refer to

the average of these two prices as the reservation or

indifference price

rðs, q, tÞ ¼ s� q�� 2ðT� tÞ, ð8Þ

given that the agent is holding q stocks. This price is an

adjustment to the mid-price, which accounts for the

inventory held by the agent. If the agent is long stock

(q40), the reservation price is below the mid-price,

indicating a desire to liquidate the inventory by selling

stock. On the other hand, if the agent is short stock

(q50), the reservation price is above the mid-price, since

the agent is willing to buy stock at a higher price.

2.3. The optimizing agent with infinite horizon

Because of our choice of a terminal time T at which we

measure the performance of our agent, the reservation

price (8) depends on the time interval (T� t). Intuitively,

the closer our agent is to time T, the less risky his

inventory in stock is, since it can be liquidated at the mid-

price ST. In order to obtain a stationary version of the

reservation price, we may consider an infinite horizon

objective of the form

�vðx, s, qÞ ¼ E

Z 1
0

�expð�!tÞ expð��ðxþ qStÞÞdt

� �
:

The stationary reservation prices (defined in the same way

as in Definition 1) are given by

�r aðs, qÞ ¼ sþ
1

�
ln 1þ

ð1� 2qÞ�2� 2

2!� � 2q 2� 2

� �

and

�r bðs, qÞ ¼ sþ
1

�
ln 1þ

ð�1� 2qÞ� 2� 2

2!� � 2q 2� 2

� �
,

where !4ð1=2Þ� 2� 2q 2.
The parameter ! may therefore be interpreted as an

upper bound on the inventory position our agent is

allowed to take. The natural choice of

! ¼ ð1=2Þ� 2� 2ðqmax þ 1Þ2 would ensure that the prices

defined above are bounded.

2.4. Limit orders

We now turn to an agent who can trade in the stock

through limit orders that he sets around the mid-price

given by (1). The agent quotes the bid price pb and the ask

price pa, and is committed to respectively buy and sell one

share of stock at these prices, should he be ‘hit’ or ‘lifted’

by a market order. These limit orders pb and pa can be

continuously updated at no cost. The distances

� b ¼ s� pb

and

� a ¼ pa � s

and the current shape of the limit order book determine

the priority of execution when large market orders get

executed.
For example, when a large market order to buy Q

stocks arrives, the Q limit orders with the lowest ask

prices will automatically execute. This causes a temporary

market impact, since transactions occur at a price that is

higher than the mid-price. If pQ is the price of the highest

limit order executed in this trade, we define

�p ¼ pQ � s

to be the temporary market impact of the trade of size Q.

If our agent’s limit order is within the range of this market

order, i.e. if �a5�p, his limit order will be executed.
We assume that market buy orders will ‘lift’ our agent’s

sell limit orders at Poisson rate �a(�a ), a decreasing

function of � a. Likewise, orders to sell stock will ‘hit’ the

agent’s buy limit order at Poisson rate �b(�b ), a decreasing
function of � b. Intuitively, the further away from the mid-

price the agent positions his quotes, the less often he will

receive buy and sell orders.
The wealth and inventory are now stochastic and

depend on the arrival of market sell and buy orders.

Indeed, the wealth in cash jumps every time there is a buy

or sell order

dXt ¼ padNa
t � pbdNb

t

where Nb
t is the amount of stocks bought by the agent and

Na
t is the amount of stocks sold. Nb

t and Na
t are Poisson

processes with intensities �b and �a. The number of stocks

held at time t is

qt ¼ Nb
t �Na

t :

The objective of the agent who can set limit orders is

uðs, x, q, tÞ ¼ max
�a,� b

Et½�expð��ðXT þ qTSTÞÞ�:

Notice that, unlike the setting described in the previous

subsection, the agent controls the bid and ask prices and

therefore indirectly influences the flow of orders he

receives.
Before turning to the solution of this problem, we

consider some realistic functional forms for the intensities

�a(�a ) and �b(�b ) inspired by recent results in the

econophysics literature.
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2.5. The trading intensity

One of the main objectives of the econophysics commu-

nity has been to describe the laws governing the

microstructure of financial markets. Here, we will be

focusing on the results which address the Poisson

intensity � with which a limit order will be executed as

a function of its distance � to the mid-price. In order to

quantify this, we need to know statistics on (i) the overall

frequency of market orders, (ii) the distribution of their

size and (iii) the temporary impact of a large market

order. Aggregating these results suggests that � should

decay as an exponential or a power law function.
For simplicity, we assume a constant frequency � of

market buy or sell orders. This could be estimated by

dividing the total volume traded over a day by the average

size of market orders on that day.
The distribution of the size of market orders has been

found by several studies to obey a power law. In other

words, the density of market order size is

f QðxÞ / x�1�� ð9Þ

for large x, with �¼ 1.53 in Gopikrishnan et al. (2000)

for US stocks, �¼ 1.4 in Maslow and Mills (2001)

for shares on the NASDAQ and �¼ 1.5 in Gabaix et al.

(2006) for the Paris Bourse.
There is less consensus on the statistics of the market

impact in the econophysics literature. This is due to a

general disagreement over how to define it and how to

measure it. Some authors find that the change in price �p

following a market order of size Q is given by

�p / Q�, ð10Þ

where �¼ 0.5 in Gabaix et al. (2006) and �¼ 0.76 in

Weber and Rosenow (2005). Potters and Bouchaud

(2003) find a better fit to the function

�p / lnðQÞ: ð11Þ

Aggregating this information, we may derive the

Poisson intensity at which our agent’s orders are

executed. This intensity will depend only on the distance

of his quotes to the mid-price, i.e. �b(�b ) for the arrival of
sell orders and �a(�a ) for the arrival of buy orders.

For instance, using (9) and (11), we derive

�ð�Þ ¼ �Pð�p4�Þ

¼ �Pð lnðQÞ4K�Þ

¼ �PðQ4 expðK�ÞÞ

¼ �

Z 1
expðK�Þ

x�1��dx

¼ A expð�k�Þ ð12Þ

where A¼�/� and k¼ �K. In the case of a power price

impact (10), we obtain an intensity of the form

�ð�Þ ¼ B���=�:

Alternatively, since we are interested in short term
liquidity, the market impact function could be derived
directly by integrating the density of the limit order book.
This procedure is described in Smith et al. (2003) and
Weber and Rosenow (2005) and yields what is sometimes
called the ‘virtual’ price impact.

3. The solution

3.1. Optimal bid and ask quotes

Recall that our agent’s objective is given by the value
function

uðs, x, q, tÞ ¼ max
�a, �b

Et½�expð��ðXT þ qTSTÞÞ� ð13Þ

where the optimal feedback controls �a and �b will turn
out to be time and state dependent. This type of optimal
dealer problem was first studied by Ho and Stoll (1981).
One of the key steps in their analysis is to use the dynamic
programming principle to show that the function u solves
the following Hamilton–Jacobi–Bellman equation

ut þ
1

2
�2uss þmax

�b
�bð�bÞ

�
uðs, x� sþ �b, qþ 1, tÞ

� uðs, x, q, tÞ
�
þmax

�a
�að�aÞ

�
uðs, xþ sþ �a, q� 1, tÞ

� uðs, x, q, tÞ
�
¼ 0,

uðs, x, q, TÞ ¼ �expð��ðxþ qsÞÞ:

8>>>>>>>>><
>>>>>>>>>:
The solution to this nonlinear PDE is continuous in
the variables s, x and t and depends on the discrete
values of the inventory q. Due to our choice of
exponential utility, we are able to simplify the problem
with the ansatz

uðs, x, q, tÞ ¼ �expð��xÞ expð��� ðs, q, tÞÞ: ð14Þ

Direct substitution yields the following equation for �:

�t þ ð1=2Þ�
2�ss � ð1=2Þ�

2��2s

þmax
�b

�
�bð�bÞ

�
½1� e� ðs��

b�r bÞ�

�

þmax
�b

�
�að�aÞ

�
½1� e�� ðsþ�

a�r aÞ �

�
¼ 0;

�ðs, q,TÞ ¼ qs:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

Applying the definition of reservation bid and ask prices
(given in section 2.2) to the ansatz (14), we find that rb and
ra depend directly on this function �. Indeed,

rbðs; q; tÞ ¼ �ðs; qþ 1; tÞ � �ðs; q; tÞ ð16Þ

is the reservation bid price of the stock, when the
inventory is q and

r aðs, q, tÞ ¼ �ðs, q, tÞ � �ðs, q� 1, tÞ ð17Þ

is the reservation ask price, when the inventory is q.
From the first-order optimality condition in (15),
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we obtain the optimal distances �b and �a. They are given

by the implicit relations

s� rbðs; q; tÞ ¼ �b �
1

�
ln 1� �

�bð�bÞ

ð@�b=@�Þð�bÞ

� �
ð18Þ

and

raðs, q, tÞ � s ¼ �a �
1

�
ln 1� �

�að�aÞ

ð@�a=@�Þð�aÞ

� �
: ð19Þ

In summary, the optimal bid and ask quotes are

obtained through an intuitive, two-step procedure.

First, we solve the PDE (15) in order to obtain the

reservation bid and ask prices rb(s, q, t) and ra(s, q, t).

Second, we solve the implicit equations (18) and (19) and

obtain the optimal distances �b(s, q, t) and �a(s, q, t)
between the mid-price and optimal bid and ask quotes.

This second step can be interpreted as a calibration of our

indifference prices to the current market supply �b and

demand �a.

3.2. Asymptotic expansion in q

The main computational difficulty lies in solving

equation (15). The order arrival terms (i.e. the terms

to be maximized in the expression) are highly nonlinear

and may depend on the inventory. We therefore

suggest an asymptotic expansion of � in the inventory

variable q, and a linear approximation of the order

arrival terms. In the case of symmetric, exponential

arrival rates

�að�Þ ¼ �bð�Þ ¼ Ae�k�; ð20Þ

the indifference prices ra(s, q, t) and rb(s, q, t) coincide

with their ‘frozen inventory’ values, as described in

section 2.2.
Substituting the optimal values given by equations (18)

and (19) into (15) and using the exponential arrival rates,

we obtain

�t þ
1

2
� 2�ss �

1

2
� 2�� 2s þ

A

kþ �
ðe�k�

a

þ e�k�
b

Þ ¼ 0,

�ðs, q, T Þ ¼ qs:

8><
>:

ð21Þ

Consider an asymptotic expansion in the inventory

variable

�ðq, s, tÞ ¼ �0ðs, tÞ þ q�1ðs, tÞ þ
1

2
q2�2ðs, tÞ þ � � � : ð22Þ

The exact relations for the indifference bid and ask prices,

(16) and (17), yield

r bðs, q, tÞ ¼ �1ðs, tÞ þ ð1þ 2qÞ�2ðs, tÞ þ � � � ð23Þ

and

r aðs, q, tÞ ¼ �1ðs, tÞ þ ð�1þ 2qÞ�2ðs, tÞ þ � � � : ð24Þ

Using equations (24) and (23), along with the optimality

conditions (18) and (19), we find that the optimal pricing

strategy amounts to quoting a spread of

�a þ �b ¼ �2�2ðs; tÞ þ
2

�
ln 1þ

�

k

� �
ð25Þ

around the reservation price given by

rðs, q, tÞ ¼
r a þ r b

2
¼ �1ðs, tÞ þ 2q�2ðs, tÞ:

The term �1 can be interpreted as the reservation price,

when the inventory is zero. The term �2 may be interpreted

as the sensitivity of the market maker’s quotes to changes

in inventory. For instance, since �2 will turn out to be

negative, accumulating a long position q40 will result in

aggressively low quotes.
The bid–ask spread in (25) is independent of the

inventory. This follows from our assumption of exponen-

tial arrival rates. The spread consists of two components,

one that depends on the sensitivity to changes in inventory

�2 and one that depends on the intensity of arrival of

orders, through the parameter k.
Taking a first-order approximation of the order arrival

term

A

kþ �
ðe�k�

a

þ e�k�
b

Þ ¼
A

kþ �
2� kð�a þ �bÞ þ � � �
	 


, ð26Þ

we notice that the linear term does not depend on the

inventory q. Therefore, if we substitute (22) and (26) into

(21) and group terms of order q, we obtain

�1t þ
1

2
�2�1ss ¼ 0,

�1ðs, T Þ ¼ s;

8<
: ð27Þ

whose solution is �1(s, t)¼ s. Grouping terms of order q2

yields

�2t þ
1

2
�2�2ss �

1

2
�2�ð�1s Þ

2
¼ 0

�2ðs,T Þ ¼ 0:

8<
: ð28Þ

whose solution is �2 ¼ �ð1=2Þ�2� ðT� tÞ. Thus, for this

linear approximation of the order arrival term, we obtain

the same indifference price

rðs; tÞ ¼ s� q��2ðT� tÞ ð29Þ

as for the ‘frozen inventory’ problem from section 2.2.

We then set a bid/ask spread given by

�a þ �b ¼ ��2ðT� tÞ þ
2

�
ln 1þ

�

k

� �
ð30Þ

around this indifference or reservation price. Note that

if we had taken a quadratic approximation of the order

arrival term, we would still obtain �1¼ s, but the

sensitivity term �2(s, t) would solve a nonlinear PDE.
Equations (29) and (30) thus provide us with simple

expressions for the bid and ask prices in terms

of our model parameters. This approximate solution
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also simplifies the simulations we perform in the next
section.

3.3. Numerical simulations

We now test the performance of our strategy, focusing
primarily on the shape of the P&L profile and the final
inventory qT. We will refer to our strategy as the
‘inventory’ strategy, and compare it to a benchmark
strategy that is symmetric around the mid-price, regard-
less of the inventory. This strategy, which we refer to as
the ‘symmetric’ strategy, uses the average spread of the
inventory strategy, but centres it around the mid-price,
rather than the reservation price.

In practice, the choice of time step dt is a subtle one.
On the one hand, dt must be small enough so that the
probability of multiple orders reaching our agent is small.
On the other hand, dt must be larger than the typical tick
time, otherwise the agent’s quotes will be updated so
frequently that he will not see any orders (particularly if
his quotes are outside the market bid/ask spread).

As far as our simulation is concerned, we chose the
following parameters: s¼ 100, T¼ 1, �¼ 2, dt¼ 0.005,
q¼ 0, �¼ 0.1, k¼ 1.5 and A¼ 140. The simulation is
obtained through the following procedure: at time T,
the agent’s quotes �a and �b are computed, given the state
variables. At time tþ dt, the state variables are updated.
With probability �a(�a)dt, the inventory variable
decreases by one and the wealth increases by sþ �a.
With probability �b(�b)dt, the inventory increases by one
and the wealth decreases by s – �b. The mid-price is
updated by a random increment ��

ffiffiffiffiffi
dt
p

. Figure 1
illustrates the bid and ask quotes for one simulation of
a stock path.

Notice that, at time t¼ 0.15, the bid and ask quotes are
relatively high, indicating that the inventory position
must be negative (or short stock). Since the bid price is
aggressively placed near the mid-price, our agent is more
likely to buy stock and the inventory quickly returns to
zero by time t¼ 0.2. As we approach the terminal time,
our agent’s bid/ask quotes look more like a strategy that
is symmetric around the mid-price. Indeed, when we are
close to the terminal time, our inventory position is
considered less risky, since the mid-price is less likely to
move drastically.

We then run 1000 simulations to compare our
‘inventory’ strategy to the ‘symmetric’ strategy. This
strategy uses the average bid/ask spread of the inventory
strategy over the time period, but centres it around
the mid-price. For example, the performance of the
symmetric strategy that quotes a bid/ask spread of $1.49
(corresponding to the average spread of the optimal agent
with �¼ 0.1) is displayed in table 1. This symmetric
strategy has a higher return and higher standard
deviation than the inventory strategy. The symmetric
strategy obtains a slightly higher return since it is centred
around the mid-price, and therefore receives a higher

volume of orders than the inventory strategy. However,

the inventory strategy obtains a P&L profile with a

much smaller variance, as illustrated in the histogram

in figure 2.
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Figure 1. The mid-price and the optimal bid and ask quotes.

Table 1. 1000 simulations with �¼ 0.1.

Strategy
Average
spread Profit

Std
(Profit) Final q

Std
(Final q)

Inventory 1.49 65.0 6.6 0.08 2.9
Symmetric 1.49 68.4 12.7 0.26 8.4
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Figure 2. �¼ 0.1.

Table 2. 1000 simulations with �¼ 0.01.

Strategy
Average
Spread Profit

Std
(Profit) Final q

Std
(Final q)

Inventory 1.35 68.6 8.7 0.12 5.1
Symmetric 1.35 68.8 12.8 0.09 8.7
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The results of the simulations comparing the

‘inventory’ strategy for �¼ 0.01 with the corresponding

‘symmetric’ strategy are displayed in table 2. This small

value for � represents an investor who is close to risk

neutral. The inventory effect is therefore much smaller

and the P&L profiles of the two strategies are very similar,

as illustrated in figure 3. In fact, in the limit as �! 0 the

two strategies are identical.
Finally, we display the performance of the two

strategies for �¼ 1 in table 3. This choice corresponds

to a very risk averse investor, who will go to great lengths

to avoid accumulating an inventory. This strategy pro-
duces low standard deviations of profits and final
inventory, but generates more modest profits than the
corresponding symmetric strategy (see figure 4).
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Appendix

Herein, we consider the geometric Brownian motion

dSu

Su
¼ �dWu

with initial value St¼ s, and the mean/variance objective

Vðx; s; q; tÞ ¼ Et ðxþ qSTÞ �
�

2
ðqST � qsÞ2

h i
;

where x is the initial wealth in dollars. This value function
can be written as

Vðx; s; q; tÞ ¼ xþ qs�
�q2s2

2
e�

2ðT�tÞ � 1
� �

:
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Figure 4. �¼ 1.

Table 3. 1000 simulations with � ¼ 1.

Strategy
Average
spread Profit

Std
(Profit) Final q

Std
(Final q)

Inventory 3.02 31.4 5.0 0.02 1.7
Symmetric 3.02 44.0 11.0 0.00 5.1
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Figure 3. �¼ 0.01.
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This yields reservation prices of the form

Raðs; q; tÞ ¼ sþ
ð1� 2qÞ

2
�s2 e�

2ðT�tÞ � 1
� �

and

Rbðs; q; tÞ ¼ sþ
ð�1� 2qÞ

2
�s2 e�

2ðT�tÞ � 1
� �

:

These results are analogous to the ones obtained in

section 2.2.
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