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Abstract

Much of computer vision has been devoted to the question of representation through

feature extraction. Ideal features transform raw pixel intensity values to a representation

in which common problems such as object identification, tracking, and segmentation

are easier to solve. Recently, deep feature hierarchies have proven to be immensely suc-

cessful at solving many problems in computer vision. In the supervised setting, these

hierarchies are trained to solve specific problems by minimizing an objective function

of the data and problem specific label information. Recent findings suggest that despite

being trained on a specific task, the learned features can be transferred across multi-

ple visual tasks. These findings suggests that there exists a generically useful feature

representation for natural visual data.

This work aims to uncover the principles that lead to these generic feature represen-

tations in the unsupervised setting, which does not require problem specific label infor-

mation. We begin by reviewing relevant prior work, particularly the literature on auto-

encoder networks and energy based learning. We introduce a new regularizer for auto-

encoders that plays an analogous role to the partition function in probabilistic graphical

models. Next we explore the role of specialized encoder architectures for sparse in-

ference. The remainder of the thesis explores visual feature learning from video. We

establish a connection between slow-feature learning and metric learning, and exper-

imentally demonstrate that semantically coherent metrics can be learned from natural

videos. Finally, we posit that useful features linearize natural image transformations

in video. To this end, we introduce a new architecture and loss for training deep fea-

ture hierarchies that linearize the transformations observed in unlabeled natural video

sequences by learning to predict future frames in the presence of uncertainty.
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Chapter 1

Introduction

Vision is the ability to make inferences about the natural world from the patterns of

light captured by the eyes of living organism or cameras in machines. A digital image is

a discrete two dimensional array of intensity values referred to as pixels. Though each

pixel corresponds to a potentially independent light intensity measurement, these intesi-

ties exhibit strong spatial correlations in natural images [61]. However, this structure is

not explicitly captured by the camera sensor; each pixel is stored as a separate light in-

tensity measurement in memory. Therefore it is natural to think of raw images as points

in high dimensional space in which each pixel corresponds to an independant measur-

ment. Fundamentally, the structure in images is due to the structure of our world; though

no two objects are exactly alike, many structures and textures are repeated throughout

the world allowing us to categorize and identitfy objects by referencing our memory.

Because of this structure, or dependency among the pixels, the number of possible nat-

ural images is far smaller than the number of possible images. This observation has a

geometric interpretation: the intrinsic dimension of natural images is much lower than

the ambient dimension, thus natural images are concentrated around low-dimensional
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Figure 1.1: Top left: random image, Top right: natural image, Bottom left: visualization
of unstructured data, Bottom right: visualization of data with intrinsic structure

“manifolds” [4, 63, 59]. Similarly, videos can be imagined as one dimensional trajecto-

ries on this manifold parametrized by time [27]. In contrast to natural images, random

images contain no structure by contruction. Thus a collection of random images fills the

ambient space, rather then concentrating on low dimensional manifolds. Figure 1.1 is an

illustrative visualization of the distribution of random images (left) and natural images

(right).

The role of visual features is to transform the raw input image to a representation

that facilitates inferences about the natural world by modeling commonly occurring de-

pendencies between input pixels. This can be restated from the manifold perspective:

visual features model the natural data manifold. The manifold theory of natural data

allows for a more geometrically intuitive interpretation of problems in computer vision.

Many existing feature learning algorithms will be presented from the manifold theory

perspective of natural data in Chapter 2.

Historically, approaches for constructing visual features in computer vision have

been broadly divided into two categories: “hand crafted” features are designed by a hu-
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Figure 1.2: The LeNet5 network was trained to recognize hand written characters in
order to automatically process bank checks

man expert, whereas “learned” features use techniques from machine learning to learn

the features automatically from the problem related data itself. Examples of hand crafted

features (also called “descriptors”) include the Scale Invariant Feature Transform (SIFT)

[46], Histogram of Gradients (HoG) [18], and “gist” [49] features. Although these hand

crafted features paved the way for many breakthroughs in computer vision, recent break-

throughs have largely been attributed to feature learning with deep convolutional net-

works (ConvNets) [23, 41, 40]. Remarkably, these hand crafted features bear striking

similarity to shallow ConvNets, in that they are composed of the same sequence of op-

erations: feature extraction followed by thresholding and pooling. The main differences

between ConvNets and these features are that: (i) ConvNet features are optimized or

“learned” for specific problems, and (ii) they are arranged and learned in a hierarchi-

cal fashion. Traditional ConvNet layers are composed of trainable convolutional filter

banks, interspersed with point-wise nonlinearities and sub-sampling (or “pooling”) lay-

ers. A now famous ConvNet architecture, dubbed LeNet5 [41] is shown in Figure 1.2.

Interestingly, the hierarchical representations of ConvNets were inspired by stud-

ies of natural visual systems. A long standing belief in neuroscience is that the visual

cortex has a hierarchical organization [32, 21]. Simply put, there is a sequence of pro-

cessing steps which eventually results in our visual perception of the world. Recent
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work has revealed strong empirical similarities between the artificial feature hierarchies

of ConvNets and natural visual hierarchies of the animal visual system [68]. Though the

hierarchical representations learned by ConvNets are not completely understood, it is

clear that the sequence of operations corresponding to each layer transforms the data in

a way that makes the task easier to solve for the final layer, often a linear operator.

Deep hierarchical features have the capacity to represent highly complex structures

that embody abstract invariances. Hand crafting effective feature hierarchies that em-

body these properties would be an intractable task. There is strong biological and psy-

chological evidence of learning in the visual cortices of humans and animals [22, 62]. In

a project lead by Pawan Sinha that restored vision to young adults affected by congenital

cataracts, the subjects took several weeks to learn how to see [62]. There is even evi-

dence to support the existiance of learning principle that is agnostic to sensory modality

[60].

Recent findings suggest that the early stages of the hierarchy learned by ConvNets

on specific supervised learning tasks such as classification, can be transfered to other

tasks, such as segmentation [69]. This finding suggests that these representations are not

task specific but are generically useful. The goal of this thesis is to explore unsupervised

learning principles that lead to generically useful hierarchical representations.

1.1 Thesis Outline and Summary of Contributions

The thesis is organized as follows. Chapter 2 reviews prior work on feature learning

with emphasis on auto-encoders and sparse feature learning. Chapter 3 introduces the

Saturating Auto-Encoder, a class of regularized auto-encoders whose regularizers play

an analogous role to the partition function of probabilistic models. The new regular-

4



izer offers a unified interpretation of popular regularizered auto-encoders such as the

Sparse Auto-Encoder and Contractive Auto-Encoder [55, 58]. Because learning sparse

inference will play an important role in later chapters, Chapter 4 evaluates various net-

work architectures for learning sparse inference in pre-trained and learned dictionaries.

Chapters 5 and 6 propose new methods for learning hierarchical features from tem-

porally coherent data (video). Chapters 5 introduces an architecture and loss to learn

spatio-temporally coherent metrics that parallels Slow Feature Analysis [67]. We show

that the learned metrics exhibit semantic coherence by evaluating them on a class-based

recall task. In Chapter 6 we propose a new architecture and loss for learning features

that linearize temporal transformations in natural video. We also introduce the “phase-

pooling”,an operator specifically designed for the task of linearization. Finally, Chapter

7 concludes the thesis and points future research directions.
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Chapter 2

Related Work

Unsupervised feature learning arguably dates back to the invention of Principal

Component Analysis (PCA) in 1901 by Karl Pearson [52]. As mentioned in Chapter

1, feature learning algorithms model intrinsically low dimensional data embedded in

a high dimensional ambient space. These models can usually be decomposed into two

parts: a mapping from the input space to the feature space, called encoding, and mapping

the feature space back to the input space, called decoding. If the encoding or decoding

processes have corresponding functional forms, they are referred to as the “encoder” and

“decoder”, respectively. From the natural image manifold perspective, ideal encodings

map the extrinsic coordinates (i.e. pixel values) to intrinsic manifold coordinates. It

is hoped that these intrinsic coordinates correspond to physical attributes of the natural

world, such as the presence of certain objects in the scene, their properties, etc [48, 31].

Unsupervised feature learning models are mainly distinguished by: (i)-whether they as-

sume a deterministic or probabilistic model, (ii)-the geometrical prior they assume about

the data manifold, (iii)-whether they learn an encoder, decoder, or both. For example,

Principal Component Analysis assumes that the data is concentrated around a hyper-
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Algorithm Manifold Model Encode Decode Relate Enc. & Dec.
PCA Linear X X WD = WT

E
ICA Linear X X WD = WT

E
Sparse Coding Local Linear X X Separate

CBP Osculating Circle X X Separate
PSD & LISTA Local Linear X X Separate

DrLIM Nonlinear X X Enc. Only
Chapter 5 Nonlinear X X Enc. Only
Chapter 6 Nonlinear X X Separate

Adversarial Networks Nonlinear X X Dec. Only
Auto-Encoders Nonlinear X X Separate

Model Objective/Prior
De-correlation/Independence

Sparsity
Metric Learning/Geometric Prior

All of the Above
None

Table 2.1: Summary of unsupervised feature learning algorithms and their properties
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plane, i.e. it assumes a globally linear data manifold model. The PCA encoder is a

matrix operator, We, as is the decoder Wd = WT
e . Although probabilistic models is not

the focus of this work, we will see a connection between probabilistic and deterministic

models in Chapter 3. Obtaining “invariant” representations has been a major driving

force in feature learning, driven mainly by recognition and classification problems. In-

variant features imply that the encoding process is necessarily a many-to-one mapping.

This means that the decoding process must involve some random selection among the

possible inputs that produced the code, usually by sampling from a distribution. Models

that include a decoder are called “generative models” in the literature.

Table 2.1 summarizes key aspects of several well-known feature learning models,

as well as the new models which will be introduced in Chapters 5 and 6. The first col-

umn lists the name of the model, the color indicates the type of objective each model

tries to optimize. For example, one version of PCA finds maximally decorrelated linear

components. The “manifold model” column indicates the geometric prior each model

assumes about the data manifold. As another exampling, the Continous Basis Pursuit

(CBP) model proposes a local osculating circle model to the data manifold [20]. The

next two columns indicate whether each model learns an encoder and/or decoder. Fi-

nally, the last column summarizes the relationship enforced between the encoder and

decoder. For example in PCA the encoder and decoder are related by the transpose op-

erator. This chapter will review some of the algorithms in Table 2.1, placing emphasis

on the precursors of the algorithms presented in Chapters 5 and 6. The algorithms will

be presented as various models of the data manifold.
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Figure 2.1: Left: visualization of the optimization problem used to solve for indepen-
dent representations. Right: visualization of the optimization problem used to solve for
sparse representations.

2.1 Principal and Independent Component Analysis

Principal Component Analysis (PCA) and Independent Component Analysis (ICA)

are the most well know linear manifold models [33]. Both assume that the observed

high dimensional data x are generated from some low dimensional latent variables z

via a linear operator A, that is x = Az. Assuming that the data is zero mean, PCA im-

plicitly makes the assumption that the latent variables correspond to directions with the

largest variance [52]. These components can be obtained from the Eigen decomposition

of the covariance matrix. ICA however searches for linearly independent components,

formulating the definition of independence using the central limit theorem. Although

the detailed derivation of ICA will not be presented here, we will mention that it leads

to a fourth order moment (kurtosis) maximization problem subject to a second order

moment (variance) constraint. This optimization problem is visualized as the left plot

of Figure 2.1. The blue curves represent the level sets of the kurtosis objective, and the

red curve represents the unit variance constraint. Figure 2.3 shows the features learned

using an ICA algorithm on natural image patches. Note the strong resemblance to the

9



Figure 2.2: Sparse coding learns a local linear model of the data manifold (source: [2]).

bases learned with sparse feature learning algorithms such as Sparse Coding [51]. The

next section will establish a connection between ICA and sparse inference.

2.2 Sparse Representations

Sparse inference refers to the problem of finding the sparse coefficients z which

reconstruct the input x as a linear combination of some basis elements contained an over-

complete dictionary Wd. Sparsity is measured by the number of non-zero coefficients;

the higher the sparsity the fewer non-zero coefficients in z used to represent x. The

sparse inference problem can be stated formally as:

min ‖z‖0 subject to x = Wdz (2.1)

In general, this is an intractable combinatorial problem. A now famous breakthrough

showed that exact sparse solutions can be obtained, under certain conditions, by replac-

ing the L0 norm with an L1 norm [13]. This optimization problem is depicted on the

10



Figure 2.3: Independent features learned on natural image patches (source: [33]).

right side of Figure 2.1. The level sets of the L1 norm are shown in blue and the linear

constraint is shown in red. The minimum occur on the x-axis, with y = 0 implying that

the solution is indeed sparse. Remarkably, the solution to the ICA problem (left side of

Figure 2.1) is also sparse though the objective was explicitly not derived with sparsity in

mind. Given this similarity between ICA and sparse feature learning, it is not surprising

that the features learned with ICA on natural images strongly resemble those learned

with sparse coding.

Relaxing the constraint, this problem can be written as an unconstrained loss func-

tional called the lasso (also basis pursuit de-noising) [14]:

Llasso =
1
2
‖x −Wdz‖22 + α‖z‖1 (2.2)

11



Minimizing the above loss with respect to z and a fixed Wd corresponds to the sparse

inference problem, which also corresponds to the “encoding” process. Decoding sparse

representations is trivial, it simply corresponds to computing Wdz. The loss described by

the above equation is non-convex with respect to z, however each of the two terms are

individually convex which prompted alternating minimization approaches such as the

various Iterative Shrinkage and Thresholding algorithms [3]. It is possible to find a “feed

forward”, i.e. non-iterative approximation (i.e. encoder) to iterative sparse inference

algorithms for data x drawn from a stationary distribution. Thus the coefficients are

given by a functional mapping of the input, i.e. z = FW(x). This mapping, called the

encoder, can be learned jointly with the decoder. The corresponding loss is given by

Equation 2.3,

LS AE =
1
2
‖x −WdFW(x)‖22 + α‖FW(x)‖1 (2.3)

The above loss can be implemented using a network architecture called an “auto-

encoder”. Depending on the functional form of FW , the above loss can be highly non-

convex with no known optimal minimization algorithm, however stochastic gradient

descent works well in practice. Because of the sparsity-inducing L1 penalty on the

coefficients, this is called the sparse auto-encoder (SAE) [53, 56]. Optimal architectures

for FW() in the SAE network are the subject of Chapter 4. Other auto-encoder networks

will be discussed later in this chapter.

It was noticed that when sparse feature learning was applied to natural images, local

edge detectors similar to the Gabor wavelet basis emerged. Gabor wavelets were already

being used in many computer vision applications [51, 44]. This observation lead to a

flurry of works that tried to apply sparse features to common computer vision problems

such as object detection and recognition. One problem with sparse representations is
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their instability. A sparse code corresponding to an overcomplete basis implies that

each basis element is selective and is activated only be specific inputs; an edge at a

specific location and orientation for example. If the edge moves slightly, a different basis

element will respond, corresponding to a change of support in code space. This highly

unstable behavior of sparse representations is undesirable for tasks such as classification

where invariance is an important property. For example, the object category remains

the same under many transformations. One way to mitigate this behavior is to combine

the responses of several basis elements such that the response of the group is more

stable than the response of the individual elements. This so called “group sparsity”

results in feature representations that are much more stable and hence more useful for

tasks that require invariant representations [36, 33, 70]. Groups of feature activations

can be combined using so called “pooling” operators, which partition the activations

into groups and typically output their L2 norm. In group-sparse models, the sparsity

inducing L1 norm is applied to the grouped activations, i.e. to the output of the local

L2 pooling operator. Specifically, if the code space is partitioned into K potentially

overlapping neighborhoods, where Pi denotes the ith neighborhood, the group sparsity

loss can be written as:

LGS C =
1
2
‖x −Wz‖22 + α

K∑
i=1

√∑
j∈Pi

w jz2
j (2.4)

Note that if the optional neighborhood weights w j are all set to unity, the second term

reduces to a sum of L2 norms. The features learned with this model are shown in Figure

2.4. Note that the local overlapping pooling operator introduces a global topology in

the feature space, whereby nearby features tend to co-activate. The models presented in

Chapters 5 and 6 extend this idea to temporal data in order to learn feature groups that
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Figure 2.4: Features learned with group sparsity model in a two dimensional topology,
with a local pooling neighborhood is overlaid in black. Figure from [36].

correspond to temporal transformations.

2.3 Auto-Encoders and Energy Based Learning

An auto-encoder is a conceptually simple neural network used for obtaining useful

data representations through unsupervised training. Where the usefulness is usually

measured by applying them to some other task, such as classification. This network is

composed of an encoder which outputs a hidden (or latent) representation and a decoder

which attempts to reconstruct the input using the hidden representation as its input.

Training consists of minimizing a reconstruction cost such as L2 error. However this cost

is merely a proxy for the true objective: to obtain a useful latent representation. Auto-

encoders can implement many dimensionality reduction techniques such as PCA and
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Sparse Coding [19, 51, 29]. This makes the study of auto-encoders very appealing from

a theoretical standpoint. In recent years, renewed interest in auto-encoders networks has

mainly been due to their empirical success in unsupervised feature learning [53, 56, 58,

64].

In the previous subsection we have seen that sparse coding has a corresponding

auto-encoder network implementation. In the sparse auto-encoder, a sparsity-inducing

L1 penalty is applied to the code, i.e. output of the encoder. Other penalties are possi-

ble and impose different priors on the representation. In general these architectures are

called regularized auto-encoders. In this subsection we will briefly mention several im-

portant regularizers, and introduce a new regularizer in Chapter 3, where auto-encoders

are discussed in more detail. With appropriate regularization, auto-encoders embody an

implicit model of the data manifold. The reconstruction error for a sample that is near

the manifold should be low and high for points not near the data manifold. In the follow-

ing chapter we argue that the role of the regularizer is to ensure that reconstruction error

(energy) is large for points far from the data manifold. In this sense the reconstruction

energy can be seen as an unnormalized inverse probability of a sample belonging to the

data generating distribution [43]. Two popular regularized auto-encoder models include

the Contractive Auto-Encoder (CAE) and the De-noising Auto-Encoder (DAE) [58, 64].

Both can be interpreted as implicit models of the data manifold. The DAE is trained to

reconstruct input samples from their corrupted versions. The corruption process usu-

ally involves setting a random subset of the input dimensions to zero. This forces the

model to infer the original uncorrupted pixels values from neighboring pixels. One in-

terpretation of the DAE is that it projects corrupted samples to their nearest uncorrupted

counterparts on the data manifold. The contractive auto-encoder introduced an explicit

penalty on the Frobenius norm of the Jacobian of the code with respect to the input. The
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loss corresponding to the contractive auto-encoder is:

LCAE =
1
2
‖x −Wz‖22 + α

∑
i j

(
∂zi

∂x j

)2

Where zi and x j denote the ith component of z and jth component of x, respectively.

The second term in the loss encourages a stable, or invariant, representation z. However

z cannot be perfectly stable since it must be informative enough to reconstruct the input.

From the manifold perspective, the mapping learned by the encoder is mainly allowed

to vary in the principal directions of the data manifold.

2.4 Metric Learning

Another important class of machine learning problems from which useful features

can be learned are the metric or similarity learning problems [63, 30]. Metric learning

problems aim to learn a feature space which satisfies certain metric properties given by

(weakly) labeled data. For example we may wish to find a feature space in which im-

ages of objects that belong to the same category are closer to each another than objects

from different categories. Many metric learning algorithms define a graph on the data

whereby “similar” samples are connected by an edge, and the metric between samples

are given by geodesics (shortest paths) on this graph structure [63, 16]. Most classical

metric learning algorithms, however, suffer from the so called “out of sample exten-

sion” problem [6, 17]. The problem is related to new samples introduced at test time;

new samples potentially change the adjacency graph unpredictably which in turn re-

quires re-running the geodesic computation every time a new sample is introduced. One

solution to this problem is to train an encoder that projects the data into feature space

with the desired metric properties. One method that does this is known as Dimension-
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ality Reduction by Learning an Invariant Mapping [30]. The encoder mapping, GW()

is trained by stochastically optimizing the metric relationship between pairs of points,

{xi,x j}. If the points are deemed similar via some (weak) label (Y = 0) then their dis-

tance is encouraged to decrease. Conversely if they are dissimilar, with label Y = 1,

their distance is encouraged to increase to at least some margin value m. This acts as a

contrastive term and prevents the mapping GW() from collapsing and producing constant

outputs. These two terms are combined to form the following loss:

L(W,Y, X1, X2) = (1−Y)
1
2
‖GW(xi)−GW(x j)‖2+Y

1
2

max(0,m−‖GW(xi)−GW(x j)‖2) (2.5)

Unfortunately, as we will also show that the second term is a very weak requirement in

high dimensional feature spaces and can be trivially optimized.

2.5 Summary

Assuming that natural data lies on a low dimensional manifold, is perhaps a nec-

essary but not sufficient condition for specifying a complete model of the data, and

learning useful features. Other characteristics of the data must be assumed to obtain

not only necessary but sufficient conditions for for obtaining a useful characterization

of the data. Often this includes characterizing the process by which the data was gen-

erated [7, 8]. The modus operandi of unsupervised feature learning research is to guess

what the generic characteristics of natural data are, and then to derive the corresponding

losses and architectures that maximize these properties; of which sparsity, slowness, and

independence are just a few popular examples.
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Chapter 3

Saturating Auto-Encoders

3.1 Introduction

This Chapter introduces a new latent state regularization method for auto-encoders.

We show that the saturation regularizer explicitly limits the auto-encoder’s capacity to

reconstruct inputs which are not near the data manifold. Connections are established

with other auto-encoder regularization methods, as well as with the partition function in

probabilistic models.

When minimizing reconstruction loss alone, the standard auto-encoder does not typ-

ically learn any meaningful hidden representation of the data. Well known theoretical

and experimental results show that a linear auto-encoder with trainable encoding and

decoding matrices, We and Wd respectively, learns the identity function if We and Wd

are full rank or over-complete. The linear auto-encoder learns the principle variance

directions (PCA) if We and Wd are rank deficient [19]. It has been observed that other

representations can be obtained by regularizing the latent representation. This approach

is exemplified by the Contractive and Sparse Auto-Encoders [58] [53] [56]. Intuitively,
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an auto-encoder with limited capacity will focus its resources on reconstructing por-

tions of the input space in which data samples occur most frequently. From an energy

based perspective, auto-encoders achieve low reconstruction cost in portions of the input

space with high data density (recently, [1] has examined this perspective in depth). If

the data occupies some low dimensional manifold in the higher dimensional input space

then minimizing reconstruction error achieves low energy on this manifold. Useful la-

tent state regularizers raise the energy of points that do not lie on the manifold, thus

playing an analogous role to minimizing the partition function in maximum likelihood

models. In this work we introduce a new type of regularizer that does this explicitly for

auto-encoders with a non-linearity that contains at least one flat (zero gradient) region.

We show examples where this regularizer and the choice of nonlinearity determine the

feature set that is learned by the auto-encoder.

3.2 Latent State Regularization

Several auto-encoder variants which regularize their latent states have

been proposed, they include the sparse auto-encoder and the contractive auto-

encoder[53][56][58]. The sparse auto-encoder includes an over-complete basis in the

encoder and imposes a sparsity inducing (usually L1) penalty on the hidden activations.

This penalty prevents the auto-encoder from learning to reconstruct all possible points

in the input space and focuses the expressive power of the auto-encoder on representing

the data-manifold. Similarly, the contractive auto-encoder avoids trivial solutions by

introducing an auxiliary penalty which measures the square Frobenius norm of the

Jacobian of the latent representation with respect to the inputs. This encourages a

constant latent representation except around training samples where it is counteracted
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by the reconstruction term. It has been noted in [58] that these two approaches are

strongly related. The contractive auto-encoder explicitly encourages small entries in

the Jacobian, whereas the sparse auto-encoder is encouraged to produce mostly zero

(sparse) activations which can be designed to correspond to mostly flat regions of the

nonlinearity, thus also yielding small entries in the Jacobian.

3.2.1 Saturating Auto-Encoder through Complementary Nonlin-

earities

Our goal is to introduce a simple new regularizer which explicitly raises reconstruc-

tion error for inputs not near the data manifold. Consider activation functions with at

least one flat region; these include shrink, rectified linear, and saturated linear (Fig-

ure 3.1). Auto-encoders with such nonlinearities lose their ability to accurately recon-

struct inputs which produce activations in the zero-gradient regions of their activation

functions. Let us denote the auto-encoding function xr = G(x,W), x being the input, W

the trainable parameters in the auto-encoder, and xr the reconstruction. One can define

an energy surface through the reconstruction error:

EW(x) = ||x −G(x,W)||2

Let’s imagine that G has been trained to produce a low reconstruction error at a partic-

ular data point x∗. If G is constant when x varies along a particular direction v, then the

energy will grow quadratically along that particular direction as x moves away from x∗.

If G is trained to produce low reconstruction errors on a set of samples while being sub-

ject to a regularizer that tries to make it constant in as many directions as possible, then

the reconstruction energy will act as a contrast function that will take low values around
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areas of high data density and larger values everywhere else (similarly to a negative log

likelihood function for a density estimator).

The proposed auto-encoder is a simple implementation of this idea. Using the nota-

tion W = {We, Be,Wd, Bd}, the auto-encoder function is defined as

G(x,W) = WdF(Wex + Be) + Bd

where We, Be, Wd, and Bd are the encoding matrix, encoding bias, decoding matrix, and

decoding bias, respectively, and F is the vector function that applies the scalar function

f to each of its components. f will be designed to have ”flat spots”, i.e. regions where

the derivative is zero (also referred to as the saturation region).

The loss function minimized by training is the sum of the reconstruction energy

EW(x) = ||x − G(x,W)||2 and a term that pushes the components of Wex + Be towards

the flat spots of f . This is performed through the use of a complementary function

fc, associated with the non-linearity f (z). The basic idea is to design fc(z) so that its

value corresponds to the distance of z to one of the flat spots of f (z). Minimizing fc(z)

will push z towards the flat spots of f (z). With this in mind, we introduce a penalty

of the form fc(
∑d

j=1 We
i jx j + be

i ) which encourages the argument to be in the saturation

regime of the activation function ( f ). We refer to auto-encoders which include this

regularizer as Saturating Auto-Encoders (SATAEs). For activation functions with zero-

gradient regime(s) the complementary nonlinearity ( fc) can be defined as the distance to

the nearest saturation region. Specifically, let S = {z | f ′(z) = 0} then we define fc(z) as:

fc(z) = inf
z′∈S
|z − z′|. (3.1)

Figure 1 shows three activation functions and their associated complementary nonlin-
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Figure 3.1: Three nonlinearities (top) with their associated complementary regulariza-
tion functions(bottom).

earities. The complete loss to be minimized by a SATAE with nonlinearity f is:

L =
∑
x∈D

1
2
‖x −

(
WdF(Wex + Be) + Bd

)
‖2 + α

dh∑
i=1

fc(We
i x + be

i ), (3.2)

where dh denotes the number of hidden units. The hyper-parameter α regulates the

trade-off between reconstruction and saturation.

3.3 Effect of the Saturation Regularizer

We will examine the effect of the saturation regularizer on auto-encoders with a

variety of activation functions. It will be shown that the choice of activation function

is a significant factor in determining the type of basis the SATAE learns. First, we will

present results on toy data in two dimensions followed by results on higher dimensional

image data.
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3.3.1 Visualizing the Energy Landscape

Given a trained auto-encoder the reconstruction error can be evaluated for a given

input x. For low-dimensional spaces (Rn, where n ≤ 3) we can evaluate the reconstruc-

tion error on a regular grid in order to visualize the portions of the space which are well

represented by the auto-encoder. More specifically we can compute E(x) = 1
2‖x − xr‖

2

for all x within some bounded region of the input space. Ideally, the reconstruction en-

ergy will be low for all x which are in the training set and high elsewhere. Figures 3.2

and 3.3 depict the resulting reconstruction energy for inputs x ∈ R2, and −1 ≤ xi ≤ 1.

Black corresponds to low reconstruction energy. The training data consists of a one

dimensional manifold shown overlain in yellow. Figure 3.2 shows a toy example for a

SATAE which uses ten basis vectors and a shrink activation function. Note that adding

the saturation regularizer decreases the volume of the space which is well reconstructed,

however good reconstruction is maintained on or near the training data manifold. The

auto-encoder in Figure 3.3 contains two encoding basis vectors (red), two decoding ba-

sis vectors (green), and uses a saturated-linear activation function. The encoding and

decoding bases are unconstrained. The unregularized auto-encoder learns an orthogonal

basis with a random orientation. The region of the space which is well reconstructed

corresponds to the outer product of the linear regions of two activation functions; be-

yond that the error increases quadratically with the distance. Including the saturation

regularizer induces the auto-encoder basis to align with the data and to operate in the

saturation regime at the extreme points of the training data, which limits the space which

is well reconstructed. Note that because the encoding and decoding weights are separate

and unrestricted, the encoding weights were scaled up to effectively reduce the width of

the linear regime of the nonlinearity.

23



Figure 3.2: Energy surfaces for unregularized (left), and regularized (right) solutions ob-
tained on SATAE-shrink and 10 basis vectors. Black corresponds to low reconstruction
energy. Training points lie on a one-dimensional manifold shown in yellow.

Figure 3.3: SATAE-SL toy example with two basis elements. Top Row: three randomly
initialized solutions obtained with no regularization. Bottom Row: three randomly ini-
tialized solutions obtained with regularization.

3.3.2 SATAE-shrink

Consider a SATAE with a shrink activation function and shrink parameter λ. The

corresponding complementary nonlinearity, derived using Equation 1 is given by:

shrinkc(x) =


abs(x), |x| > λ

0, elsewhere
.

Note that shrinkc(Wex + be) = abs(shrink(Wex + be)), which corresponds to an

L1 penalty on the activations. Thus this SATAE is equivalent to a sparse auto-encoder

with a shrink activation function. Given the equivalence to the sparse auto-encoder we
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Figure 3.4: Geometric visualization of non-linearities

anticipate the same scale ambiguity which occurs with L1 regularization. This ambiguity

can be avoided by normalizing the decoder weights to unit norm. It is expected that the

SATAE-shrink will learn similar features to those obtained with a sparse auto-encoder,

and indeed this is what we observe. Figure 3.6(c) shows the decoder filters learned by an

auto-encoder with shrink nonlinearity trained on gray-scale natural image patches. One

can recognize the expected Gabor-like features when the saturation penalty is activated.

When trained on the binary MNIST dataset the learned basis is comprised of portions

of digits and strokes. Nearly identical results are obtained with a SATAE which uses

a rectified-linear activation function. This is because a rectified-linear function with an

encoding bias behaves as a positive only shrink function, similarly the complementary

function is equivalent to a positive only L1 penalty on the activations.

3.3.3 SATAE-saturated-linear

Unlike the SATAE-shrink, which tries to compress the data by minimizing the num-

ber of active elements; the SATAE saturated-linear (SATAE-SL) tries to compress the

data by encouraging the latent code to be as close to binary as possible. Without a sat-

uration penalty this auto-encoder learns to encode small groups of neighboring pixels.

More precisely, the auto-encoder learns the identity function on all datasets. An example

of such a basis is shown in Figure 3.6(b). With this basis the auto-encoder can perfectly
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Figure 3.5: Evolution of two filters with increasing saturation regularization for a
SATAE-SL trained on CIFAR-10. Filters corresponding to larger values of α were ini-
tialized using the filter corresponding to the previous α. The regularization parameter
was varied from 0.1 to 0.5 (left to right) in the top five images and 0.5 to 1 in the bottom
five



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Basis elements learned by the SATAE using different nonlinearities on: 28x28
binary MNIST digits, 12x12 gray scale natural image patches, and CIFAR-10. (a) SATAE-
shrink trained on MNIST, (b) SATAE-saturated-linear trained on MNIST, (c) SATAE-shrink
trained on natural image patches, (d) SATAE-saturated-linear trained on natural image patches,
(e)-(f) SATAE-shrink trained on CIFAR-10 with α = 0.1 and α = 0.5, respectively, (g)-(h)
SATAE-SL trained on CIFAR-10 with α = 0.1 and α = 0.6, respectively.
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reconstruct any input by producing small activations which stay within the linear region

of the nonlinearity. Introducing the saturation penalty does not have any effect when

training on binary MNIST. This is because the scaled identity basis is a global mini-

mizer of Equation 2 for the SATAE-SL on any binary dataset. Such a basis can perfectly

reconstruct any binary input while operating exclusively in the saturated regions of the

activation function, thus incurring no saturation penalty. On the other hand, introducing

the saturation penalty when training on natural image patches induces the SATAE-SL to

learn a more varied basis (Figure 3.6(d)).

3.3.4 Experiments on CIFAR-10

SATAE auto-encoders with 100 and 300 basis elements were trained on the CIFAR-

10 dataset, which contains small color images of objects from ten categories. In all

of our experiments the auto-encoders were trained by progressively increasing the sat-

uration penalty (details are provided in the next section). This allowed us to visually

track the effect of the saturation penalty on individual basis elements. Figure 3.6(e)-

(f) shows the basis learned by SATAE-shrink with small and large saturation penalty,

respectively. Increasing the saturation penalty has the expected effect of reducing the

number of nonzero activations. As the saturation penalty increases, active basis ele-

ments become responsible for reconstructing a larger portion of the input. This induces

the basis elements to become less spatially localized. This effect can be seen by com-

paring corresponding filters in Figure 3.6(e) and (f). Figures 3.6(g)-(h) show the basis

elements learned by SATAE-SL with small and large saturation penalty, respectively.

The basis learned by SATAE-SL with a small saturation penalty resembles the identity

basis, as expected (see previous subsection). Once the saturation penalty is increased

small activations become more heavily penalized. To increase their activations the en-
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coding basis elements may increase in magnitude or align themselves with the input.

However, if the encoding and decoding weights are tied (or fixed in magnitude) then re-

construction error would increase if the weights were merely scaled up. Thus the basis

elements are forced to align with the data in a way that also facilitates reconstruction.

This effect is illustrated in Figure 3.5 where filters corresponding to progressively larger

values of the regularization parameter are shown. The top half of the figure shows how

an element from the identity basis (α = 0.1) transforms to a localized edge (α = 0.5).

The bottom half of the figure shows how a localized edge (α = 0.5) progressively trans-

forms to a template of a horse (α = 1).

3.4 Experimental Details

Because the regularizer explicitly encourages activations in the zero gradient regime

of the nonlinearity, many encoder basis elements would not be updated via back-

propagation through the nonlinearity if the saturation penalty were large. In order to

allow the basis elements to deviate from their initial random states we found it neces-

sary to progressively increase the saturation penalty. In our experiments the weights

obtained at a minimum of Equation 2 for a smaller value of α were used to initialize the

optimization for a larger value of α. Typically, the optimization began with α = 0 and

was progressively increased to α = 1 in steps of 0.1. The auto-encoder was trained for

30 epochs at each value of α. This approach also allowed us to track the evolution of

basis elements as a function of α (Figure 3.5). In all experiments data samples were nor-

malized by subtracting the mean and dividing by the standard deviation of the dataset.

The auto-encoders used to obtain the results shown in Figure 3.6 (a),(c)-(f) used 100

basis elements, others used 300 basis elements. Increasing the number of elements in
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the basis did not have a strong qualitative effect except to make the features represented

by the basis more localized. The decoder basis elements of the SATAEs with shrink and

rectified-linear nonlinearities were reprojected to the unit sphere after every 10 stochas-

tic gradient updates. The SATAEs which used saturated-linear activation function were

trained with tied weights. All results presented were obtained using stochastic gradient

descent with a constant learning rate of 0.05.

3.5 Discussion

In this work we have introduced a general and conceptually simple latent state regu-

larizer. It was demonstrated that a variety of feature sets can be obtained using a single

framework. The utility of these features depend on the application. In this section we

extend the definition of the saturation regularizer to include functions without a zero-

gradient region. The relationship of SATAEs with other regularized auto-encoders will

be discussed. We conclude with a discussion on future work.

3.5.1 Extension to Differentiable Functions

We would like to extend the saturation penalty definition (Equation 1) to differen-

tiable functions without a zero-gradient region. An appealing first guess for the com-

plimentary function is some positive function of the first derivative, fc(x) = | f ′(x)| for

instance. This may be an appropriate choice for monotonic activation functions which

have their lowest gradient regions at the extrema (e.g. sigmoids). However some ac-

tivation functions may contain regions of small or zero gradient which have negligible

extent, at the extrema for instance. We would like our definition of the complimentary

function to not only measure the local gradient in some region, but to also measure it’s
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extent. For this purpose we employ the concept of average variation over a finite inter-

val. We define the average variation of f at x in the positive and negative directions at

scale l, respectively as:

∆+
l f (x) =

1
l

∫ x+l

x
| f ′(u)|du = | f ′(x)| ∗ Π+

l (x)

∆−l f (x) =
1
l

∫ x

x−l
| f ′(u)|du = | f ′(x)| ∗ Π−l (x).

Where ∗ denotes the continuous convolution operator. Π+
l (x) and Π−l (x) are uniform

averaging kernels in the positive and negative directions, respectively. Next, define a

directional measure of variation of f by integrating the average variation at all scales.

M+ f (x) =

∫ +∞

0
∆+

l f (x)w(l)dl =

[∫ +∞

0
w(l)Π+

l (x)dl
]
∗ | f ′(x)|

M− f (x) =

∫ +∞

0
∆−l f (x)w(l)dl =

[∫ +∞

0
w(l)Π−l (x)dl

]
∗ | f ′(x)|.

Where w(l) is chosen to be a sufficiently fast decreasing function of l to insure con-

vergence of the integral. The integral with which | f ′(x)| is convolved in the above equa-

tion evaluates to some decreasing function of x for Π+ with support x ≥ 0. Similarly,

the integral involving Π− evaluates to some increasing function of x with support x ≤ 0.

This function will depend on w(l). The functions M+ f (x) and M− f (x) measure the av-

erage variation of f (x) at all scales l in the positive and negative direction, respectively.

We define the complimentary function fc(x) as:

fc(x) = min(M+ f (x),M− f (x)). (3.3)
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Figure 3.7: Illustration of the complimentary function ( fc) as defined by Equation 3
for a non-monotonic activation function ( f ). The absolute derivative of f is shown for
comparison.

An example of a complimentary function defined using the above formulation is

shown in Figure 3.7. Whereas | f ′(x)| is minimized at the extrema of f , the complimen-

tary function only plateaus at these locations.

3.5.2 Relationship with the Contractive Auto-Encoder

Let hi be the output of the ith hidden unit of a single-layer auto-encoder with point-

wise nonlinearity f (·). The regularizer imposed by the contractive auto-encoder (CAE)

can be expressed as follows:

∑
i j

(
∂hi

∂x j

)2

=

dh∑
i

 f ′(
d∑

j=1

We
i jx j + bi)2‖We

i ‖
2

 ,
where x is a d-dimensional data vector, f ′(·) is the derivative of f (·), bi is the bias of

the ith encoding unit, and We
i denotes the ith row of the encoding weight matrix. The

first term in the above equation tries to adjust the weights so as to push the activations

into the low gradient (saturation) regime of the nonlinearity, but is only defined for

differentiable activation functions. Therefore the CAE indirectly encourages operation
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in the saturation regime. Computing the Jacobian, however, can be cumbersome for

deep networks. Furthermore, the complexity of computing the Jacobian is O(d × dh),

although a more efficient implementation is possible [58], compared to the O(dh) for the

saturation penalty.

3.5.3 Relationship with the Sparse Auto-Encoder

In Section 3.2 it was shown that SATAEs with shrink or rectified-linear activation

functions are equivalent to a sparse auto-encoder. Interestingly, the fact that the satu-

ration penalty happens to correspond to L1 regularization in the case of SATAE-shrink

agrees with the findings in [29]. In their efforts to find an architecture to approximate

inference in sparse coding, Gregor et al. found that the shrink function is particularly

compatible with L1 minimization. Equivalence to sparsity only for some activation func-

tions suggests that SATAEs are a generalization of sparse auto-encoders. Like the spar-

sity penalty, the saturation penalty can be applied at any point in a deep network for the

same computational cost. However, unlike the sparsity penalty the saturation penalty is

adapted to the nonlinearity of the particular layer to which it is applied.
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Chapter 4

Convolutional Sparse Inference

Sparse coding inspired many early works in deep feature learning [51, 55, 56], as

well as early works in unsupervised learning of convolutional feature hierarchies [37].

All of these works rely heavily on solving the sparse inference problem described in

Chapter 2. However traditional iterative solvers can be computationally expensive and

are not formulated as functional mappings that are amenable to network implementa-

tions [3]. The work by Gregor and LeCun dubbed “LISTA” [29] proposed a specialized

network architecture for learning to predict sparse codes. However in that work LISTA

networks were trained to directly predict the codes found using intirative inference al-

gorithms. In this chapter we will empirically evaluate LISTA encoders under a wider

variety of conditions. This will include training convolutional LISTA networks to learn

sparse inference in convolutional dictionaries by directly minimizing the lasso loss.

34



Figure 4.1: LISTA network architecture

4.1 Convolutional-LISTA

Recall the iterative ISTA algorithm for solving the relaxed sparse inference problem

known as the lasso was discussed in Chapter 1. The lasso loss is given by:

Llasso =
1
2
‖X −WdZ‖ + α|Z|1 (4.1)

The LISTA network architecture is derived by expressing the ISTA algorithm as

a recurrent network, and “unrolling” into a finite number of loops with shared-weight

stages. The recurrent and unrolled networks (three-loops) are shown in Figure 4.1. Note

that S = I − 1
LWT

d Wd, where Wd is the decoder and L is the upper bound of WT
d Wd.

Although the “shrinkage” nonlinearity is depicted in the architecture of Figure 4.1, we

used rectified linear (ReLU) non-linearities which produce non-negative sparse codes.

The above network can be made convolutional by replacing the linear operators We and

S with convolutional filter banks. In order to be able to compute the reconstruction

error in Equation 4.1, the convolutional synthesis operator must produce outputs of the

same size as the input. This can be accomplished by using “same” convolutions or by

cropping the input and computing the reconstruction error in the “valid” regions. As

in ordinary convolutional networks, each convolutional layer produces multiple output
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planes. For example, if the encoder takes in images of 3-input planes and produces n-

output planes then the S convolution stage takes in n-input planes and produces n-output

planes. Convolutional dictionaries are massively overcomplete, making sparse inference

a potentially much harder problem [37].

4.2 Learning to Perform Sparse Inference

Training networks to perform sparse inference was originally proposed in [36], the

specialized LISTA architecture was proposed later in [29]. In [29] networks were trained

to explicitly minimize the L2 distance between the predicted and ground truth codes

obtained via iterative sparse inference. This requires pre-training a dictionary and con-

structing a dataset consisting of sparse codes corresponding to minima of the lasso loss.

However, in [36] the networks were implicitly trained to produce sparse codes by di-

rectly minimizing a variant of the lasso loss. The variant included an additional term

which encouraged the predicted codes to be close to the codes which minimize the lasso

loss. In the context of dictionary learning it is desirable to learn the encoder and de-

coder jointly, (i.e. training an auto-encoder) as opposed to learning a decoder first then

training an encoder to predict the sparse codes. This section will present experimental

results which empirically answer the following questions:

• Does the convolutional LISTA architecture outperform other architectures when

minimizing the lasso loss with a fixed dictionary?

• Does the convolutional LISTA architecture outperform other architectures when

minimizing the lasso loss with a learned dictionary?

The following experiments were performed on the whitened CIFAR-10 dataset (Figure

4.3), all reported results were obtained on the CIFAR-10 test set. Fixed-dictionary exper-
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Figure 4.2: Pre-trained decoder used for fixed-decoder experiments

Figure 4.3: Whitened CIFAR-10 samples (top) and their corresponding reconstructions.

iments used a pre-trained decoder obtained via convolutional sparse coding with FISTA

inference [37]. This decoder was used to perform the fixed-dictionary experiments. The

decoder consists of 32-convolutional 3 × 9 × 9 filters shown in Figure 4.2.

The top plot of Figure 4.5 presents the learning curves corresponding to the first five

epochs of training LISTA architectures with 0,1,and 5 loops. The networks were trained

to predict the sparse codes obtained using 10-iterations of FISTA inference by directly

minimizing the distance in code space, namely:

min
We,S
‖ZFIS T A − LIS T An(X; We, S )‖

The codes obtained with FISTA corresponding to the samples in Figure 4.3 are vi-

sualized in Figure 4.4.

In the above Equation LIS T An refers to a LISTA network with n-loops of shared

weights. The networks are trained via stochastic gradient descent with fixed learning

rate. The top plot of Figure 4.5 presents the learning curves corresponding to the first

five epochs of training LISTA architectures with 0,1,and 5 loops. The bottom plot tracks

the loss corresponding to the codes output by the networks at the corresponding epochs.
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Figure 4.4: Sparse codes obtained with FISTA inference
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The loss corresponding to 10-iterations of FISTA is shown as dashed red line. The loss

is usually, but not always, commensurate with the distance in code space. Note that

despite having the same number of trainable parameters LISTA networks with more

loops seem to converge to a lower loss, or at least converge faster. However, the reason

for this phenomena could be do to the fact that networks with more loops implicitly use

a larger learning rate since gradients add in shared-weight networks. To eliminate this

possibility, we use a coarse to fine random grid search to find the optimal learning rate

for each network in the following experiments.

Assume that Z = fW(X), where fW() is a network with trainable weights W referred

to as the encoder. The following experiments compare the performance of various archi-

tectures of fW() for minimizing Equation 4.1, with fixed and trainable decoder dictionar-

ies. We compare the performance of the LISTA architecture to that of a more traditional

deep ReLU networks, namely trainable convolutional layer interspersed with rectified

linear point-wise non-linearities. Additionally we evaluate whether sharing weights is

beneficial in networks trained for sparse inference. To this end, all multi-layer networks

are trained with tied and untied weights. All experiments were repeated five times with

different random initializations in order to measure the performance variance. In all

experiments α, the L1 weight in Equation 4.1, was set to 0.5.

4.2.1 Sparse Inference in a Fixed Dictionary

Figure 4.6 shows the lasso test loss corresponding the codes produced by the various

architectures. The error bars correspond to the empirical standard deviation obtained by

training each network from five different random intializations. The loss corresponding

to the FISTA iterative inference algorithm (shown on the left side of the x-axis) can be

considered as the lower bound on the test set. The next best codes are produced by
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Figure 4.5: Sparse inference learning curves
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Figure 4.6: Lasso Loss with Fixed Dictionary

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FISTA

LISTA5_tied
LISTA3_tied

ReLU5_untied
ReLU5_tied

LISTA3_untied

LISTA1

LISTA5_untied

ReLU1

Percent Reconstruction Error

P
er

ce
nt

 S
pa

rs
ity

Reconstruction/Sparsity Scatter (Fixed Dictionary)

Figure 4.7: Reconstruction and Sparsity with Fixed Dictionary
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Figure 4.8: Lasso Loss with Learned Dictionary

the LISTA network with the most loops (five) and shared weights. ReLU networks had

identical capacity as the LISTA networks, namely the We and S filter banks, with the skip

connections of the LISTA networks removed. Figure 4.7 shows a scatter plot where each

point once again corresponds to the codes produced by each network. The x-axis is the

average percent reconstruction error, and the y-axis is the percent sparsity (proportion of

activations that are zero). From these results, it can be concluded that indeed the LISTA

architecture is superior to the ReLU network baseline. Moreover, shared weight LISTA

networks outperform their untied weight counterparts despite having a smaller capacity.

4.2.2 Sparse Convolutional Auto-encoders

The following experiments involve minimizing Equation 4.1 with respect to the pa-

rameters of the encoder and Wd, jointly. This architecture is known as the “sparse auto-

encoder” [55]. In this setting both the parameters of the encoder and the decoder dic-

tionary are initialized to random values. In order to avoid the scale ambiguity in which
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Figure 4.9: Reconstruction and Sparsity with Learned Dictionary

the encoder learns small weights to produce a small Z while the decoder learns large

weights to recover the scale of the input, we use a normalized decoder where each ker-

nel is renormalized to unit norm after every gradient update. Figure 4.8 shows the lasso

loss on the test set corresponding to the dictionaries learned with the various encoder

architectures. Note that the resulting losses are nearly three times larger in the learned

dictionary case compared to those obtained with a pre-trained dictionary. This suggests

that learning the encoder and decoder jointly converges to less optimal solutions. Indeed

Figure 4.9 shows that the learned encoder/decoder pairs result in a larger reconstruction

error than only training the encoder to perform inference in an already optimal dictio-

nary. Furthermore, it is far less certain whether a multiple-loop LISTA architecture is

the optimal encoder architecture in this setting.
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Chapter 5

Learning Spatiotemporally Coherent

Metrics

5.1 Introduction

In this chapter we begin to explore the role of time as a source of weak supervision

for learning feature representations. We focus on feature learning from unlabeled video

data, using the assumption that adjacent video frames contain semantically similar in-

formation. This assumption is exploited to train a convolutional pooling auto-encoder

regularized by slowness and sparsity. We establish a connection between slow feature

learning to metric learning and show that the trained encoder can be used to define a

more temporally and semantically coherent metric.

Is it possible to characterize “good” representations without specifying a task a pri-

ori? If so, does there exist a set of generic priors which lead to these representations?

In recent years state-of-the-art results from supervised learning suggest that the most

powerful representations for solving specific tasks can be learned from the data itself. It
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has been hypothesized that large collections of unprocessed and unlabeled data can be

used to learn generically useful representations. However the principles which would

lead to these representations in the realm of unsupervised learning remain elusive. Tem-

poral coherence is a form of weak supervision, which we exploit to learn generic signal

representations that are stable with respect to the variability in natural video, including

local deformations.

Our main assumption is that data samples that are temporal neighbors are also likely

to be neighbors in the latent space. For example, adjacent frames in a video sequence

are more likely to be semantically similar than non-adjacent frames. This assumption

naturally leads to the slowness prior on features which was introduced in SFA ([67]).

This prior has been successfully applied to metric learning, as a regularizer in su-

pervised learning, and in unsupervised learning ([30, 47, 67]). A popular assumption in

unsupervised learning is that high dimensional data lies on a low dimensional manifold

parametrized by the latent variables as in [5, 58, 64, 28]. In this case, temporal sequences

can be thought of as one-dimensional trajectories on this manifold. Thus, an ensemble

of sequences that pass through a common data sample have the potential to reveal the

local latent variable structure within a neighborhood of that sample.

Non-linear operators consisting of a redundant linear transformation followed by a

point-wise nonlinearity and a local pooling, are fundamental building blocks in deep

convolutional networks. This is due to their capacity to generate local invariance while

preserving discriminative information ([41, 10]). We justify that pooling operators are a

natural choice for our unsupervised learning architecture since they induce invariance to

local deformations. The resulting pooling auto-encoder model captures the main source

of variability in natural video sequences, which can be further exploited by enforcing a

convolutional structure. Experiments on YouTube data show that one can learn pooling
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representations with good discrimination and stability to observed temporal variabil-

ity. We show that these features represent a metric which we evaluate on retrieval and

classification tasks.

5.2 Contributions and Prior Work

The problem of learning temporally stable representations has been extensively stud-

ied in the literature, most prominently in Slow Feature Analysis (SFA) and Slow Sub-

space Analysis (SSA) ([67, 38, 35]). Works that learn slow features distinguish them-

selves mainly in three ways: (1) how the features are parametrized, (2) how the trivial

(constant) solution is avoided, and (3) whether or not additional priors such as indepen-

dence or sparsity are imposed on the learned features.

The features presented in SFA take the form of a nonlinear transformation of the

input, specifically a quadratic expansion followed by a linear combination using learned

weights optimized for slowness ([67]). This parametrization is equivalent to projecting

onto a learned basis followed by L2 pooling. The recent work by [45] uses features

which are composed of projection onto a learned unitary basis followed by a local L2

pooling in groups of two.

Slow feature learning methods also differ in the way that they avoid the trivial so-

lution of learning to extract constant features. Constant features are perfectly slow (in-

variant), however they are not informative (discriminative) with respect to the input. All

slow feature learning methods must make a trade-off between the discriminability and

stability of the learned features in order to avoid trivial solutions. Slow Feature Anal-

ysis introduces two additional constraints, namely that the learned features must have

unit variance and must be decorrelated from one another. In the work by [45], the lin-
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ear part of the transformation into feature space is constrained to be unitary. Enforcing

that the transform be unitary implies that it is invertible for all inputs, and not just the

data samples. This unnecessarily limits the invariance properties of the transform and

precludes the possibility of learning over-complete bases. Since the pooling operation

following this linear transform has no trainable parameters, including this constraint is

sufficient to avoid the trivial solution. Metric learning approaches ([30]) can be used

to perform dimensionality reduction by optimizing a criteria which minimizes the dis-

tance between temporally adjacent samples in the transformed space, while repelling

non-adjacent samples with a hinge loss, as explained in Section 5.3. The margin based

contrastive term in DrLIM is explicitly designed to only avoid the constant solution and

provides no guarantee on how informative the learned features are. Furthermore since

distances grow exponentially due to the curse of dimensionality, metric based contrastive

terms can be trivially satisfied in high dimensions.

Our approach uses a reconstruction criterion as a contrastive term. This approach

is most similar to the one taken by [36] when optimizing group sparsity. In this work

group-sparsity is replaced by slowness, and multiple layers of convolutional slow fea-

tures are trained.

Several other studies combine the slowness prior with independence inducing priors

[45, 12, 72]. For a detailed discussion on the connection between independence and spar-

sity see [34]. However, our model maximizes the sparsity of the representation before

the pooling operator. Our model can be interpreted as a sparse auto-encoder additionally

regularized by slowness through a local pooling operator.

In this work we introduce the use of convolutional pooling architectures for slow fea-

ture learning. At small spatial scales, local translations comprise the dominant source of

variability in natural video; this is why many previous works on slowness learn mainly
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Figure 5.1: (a) Three samples from our rotating plane toy dataset. (b) Scatter plot of the
dataset plotted in the output space of GW at the start (top) and end (bottom) of training.
The left side of the figure is colored by the yaw angle, and the right side by roll, 0◦ blue,
90◦ in pink.

locally translation-invariant features ([67, 38, 45]). However, convolutional pooling

architectures are locally translation-invariant by design, which allows our model to

learn features that capture a richer class of invariances, beyond translation. Finally,

we demonstrate that nontrivial convolutional dictionaries can be learned in the unsu-

pervised setting using only stochastic gradient descent (on mini-batches), despite their

huge redundancy — that is, without resorting to alternating descent methods or iterative

sparse inference algorithms.

5.3 Slowness as Metric Learning

coherence can be exploited by assuming a prior on the features extracted from the

temporal data sequence. One such prior is that the features should vary slowly with

respect to time. In the discrete time setting this prior corresponds to minimizing an

Lp norm of the difference of feature vectors for temporally adjacent inputs. Consider

a video sequence with T frames, if zt represents the feature vector extracted from the

frame at time t then the slowness prior corresponds to minimizing
∑T

t=1 ‖zt − zt−1‖p.

To avoid the degenerate solution zt = z0 for t = 1...T , a second term is introduced
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which encourages data samples that are not temporal neighbors to be separated by at

least a distance of m-units in feature space, where m is known as the margin. In the

temporal setting this corresponds to minimizing max(0,m − ‖zt − zt′‖p), where |t − t′| >

1. Together the two terms form the loss function introduced in [30] as a dimension

reduction and data visualization algorithm known as DrLIM. Assume that there is a

differentiable mapping from input space to feature space which operates on individual

temporal samples. Denote this mapping by G and assume it is parametrized by a set of

trainable coefficients denoted by W. That is, zt = GW(xt). The per-sample loss function

can be written as:

L(xt, xt′ ,W) =


‖GW(xt) −GW(xt′)‖p, if |t − t′| = 1

max(0,m − ‖GW(xt) −GW(xt′)‖p) if |t − t′| > 1
(5.1)

In practice the above loss is minimized by constructing a ”Siamese” network ([9]) with

shared weights whose inputs are pairs of samples along with their temporal indices.

The loss is minimized with respect to the trainable parameters with stochastic gradient

descent via back-propagation. To demonstrate the effect of minimizing Equation 5.1

on temporally coherent data, consider a toy data-set consisting of only one object. The

data-set is generated by rotating a 3D model of a toy plane (Figure 5.1a) by 90◦ in one-

degree increments around two-axes of rotation, generating a total of 8100 data samples.

Input images (96× 96) are projected into two-dimensional output space by the mapping

GW . In this example the mapping GW(X) : R9216 → R2. We chose GW to be a fully

connected two layer neural network. In effect this data-set lies on an intrinsically two-

dimensional manifold parametrized by two rotation angles. Since the sequence was

generated by continuously rotating the object, temporal neighbors correspond to images

of the object in similar configurations. Figure 5.1b shows the data-set plotted in the
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output space of GW at the start (top row) and end (bottom row) of training. The left

and right hand sides of Figure 5.1b are colorized by the two rotational angles, which

are never explicitly presented to the network. This result implies that GW has learned a

mapping in which the latent variables (rotation angles) are linearized. Furthermore, the

gradients corresponding to the two rotation angles are nearly orthogonal in the output

space, which implies that the two features extracted by GW are independent.

5.4 Slow Feature Pooling Auto-Encoders

The second contrastive term in Equation 5.1 only acts to avoid the degenerate solu-

tion in which GW is a constant mapping, it does not guarantee that the resulting feature

space is informative with respect to the input. This discriminative criteria only depends

on pairwise distances in the representation space which is a geometrically weak notion

in high dimensions. We propose to replace this contrastive term with a term that penal-

izes the reconstruction error of both data samples. Introducing a reconstruction terms

not only prevents the constant solution but also acts to explicitly preserve information

about the input. This is a useful property of features which are obtained using unsu-

pervised learning; since the task to which these features will be applied is not known a

priori, we would like to preserve as much information about the input as possible.

What is the optimal architecture of GW for extracting slow features? Slow features

are invariant to temporal changes by definition. In natural video and on small spatial

scales these changes mainly correspond to local translations and deformations. Invari-

ances to such changes can be achieved using appropriate pooling operators [10, 41].

Such operators are at the heart of deep convolutional networks (ConvNets), currently

the most successful supervised feature learning architectures [40]. Inspired by these
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observations, let GWe be a two stage encoder comprised of a learned, generally over-

complete, linear map (We) and rectifying nonlinearity f (·), followed by a local pooling.

Let the N hidden activations, h = f (Wex), be subdivided into K potentially overlapping

neighborhoods denoted by Pi. Note that biases are absorbed by expressing the input x

in homogeneous coordinates. Feature zi produced by the encoder for the input at time

t can be expressed as Gi
We

(t) = ‖ht‖
Pi
p =

(∑
j∈Pi

hp
t j

) 1
p . Training through a local pool-

ing operator enforces a local topology on the hidden activations, inducing units that are

pooled together to learn complimentary features. In the following experiments we will

use p = 2. Although it has recently been shown that it is possible to recover the input

when We is sufficiently redundant, reconstructing from these coefficients corresponds to

solving a phase recovery problem [11] which is not possible with a simple inverse map-

ping, such as a linear map Wd. Instead of reconstructing from z we reconstruct from the

hidden representation h. This is the same approach taken when training group-sparse

auto-encoders [36]. In order to promote sparse activations in the case of over-complete

bases we additionally add a sparsifying L1 penalty on the hidden activations. Including

the rectifying nonlinearity becomes critical for learning sparse inference in a hugely re-

dundant dictionary, e.g. convolutional dictionaries [29]. The complete loss functional

is:

L(xt, xt′ ,W) =
∑
τ={t,t′}

(
‖Wdhτ − xτ‖2 + α|hτ|

)
+ β

K∑
i=1

∣∣∣‖ht‖
Pi − ‖ht′‖

Pi
∣∣∣ (5.2)

Figure 5.3 shows a convolutional version of the proposed architecture and loss. This

combination of loss and architecture can be interpreted as follows: the sparsity penalty

induces the first stage of the encoder, h = f (Wex), to approximately infer sparse codes

in the analysis dictionary We; the slowness penalty induces the formation of pool groups

whose output is stable with respect to temporal deformations. In other words, the first

51



(a) (b)

Figure 5.2: Pooled decoder dictionaries learned without (a) and with (b) the L1 penalty
using (6.1).

stage partitions the input space into disjoint linear subspaces and the second stage re-

combines these partitions into temporally stable groups. This can be seen as a sparse

auto-encoder whose pooled codes are additionally regularized by slowness.

5.4.1 Fully-Connected Architecture

To gain an intuition for the properties of the minima of Equation 6.1 for natural data,

an auto-encoder was trained on a small dataset consisting of natural movie patches.

This data set consists of approximately 170,000, 20 × 20 gray scale patches extracted

from full resolution movies. Minimizing Equation 6.1 with α = 0 results in the learned

decoder basis shown in Figure 5.2a. Here a dictionary of 512 basis elements was trained

whose outputs were pooled in non-overlapping groups of four resulting in 128 output

features. Only the slowest 32 groups are shown in Figure 5.2a. The learned dictionary

has a strong resemblance to the two-dimensional Fourier basis, where most groups are

comprised of phase shifted versions of the same spatial frequency. Since translations are

an invariant of the local modulus of the Fourier transform, the result of this experiment

is indicative of the fact that translations are the principal source of variation at small

spatial scales. Minimizing Equation 6.1 with α > 0 results in a more localized basis

depicted in Figure 5.2b. This basis is more consistent with a local deformation model
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as opposed to a global one.

5.4.2 Convolutional Architecture

By replacing all linear operators in our model with convolutional filter banks and

including spatial pooling, translation invariance need not be learned [41]. In all other

respects the convolutional model is conceptually identical to the fully connected model

described in the previous section. One important difference between fully-connected

and convolutional dictionaries is that the later can be massively over-complete, making

sparse inference potentially more challenging. Nevertheless we found that non-trivial

dictionaries (see Figure 5.5d) can be learned using purely stochastic optimization, that

is, without a separate sparse inference phase. Let the linear stage of the encoder consist

of a filter bank which takes C input feature maps (corresponding to the 3 color channels

for the first stage) and produces D output feature maps. Correspondingly, the convolu-

tional decoder transforms these D feature maps back to C color channels. In the con-

volutional setting slowness is measured by subtracting corresponding spatial locations

in temporally adjacent feature maps. In order to produce slow features a convolutional

network must compensate for the motion in the video sequence by producing spatially

aligned activations for temporally adjacent samples. In other words, in order to produce

slow features the network must implicitly learn to track common patterns by learning

features which are invariant to the deformations exhibited by these patterns in the tem-

poral sequence. The primary mechanism for producing these invariances is pooling

in space and across features [25]. Spatial pooling induces local translation invariance.

Pooling across feature maps allows the network to potentially learn feature groups that

are stable with respect to more general deformations. Intuitively, maximizing slowness

in a convolutional architecture leads to spatiotemporally coherent features.
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Figure 5.3: Block diagram of the Siamese convolutional model trained on pairs of
frames.

5.5 Experimental Results

To verify the connection between slowness and metric learning, we evaluate the met-

ric properties of the learned features. It is well known that distance in the extrinsic (input

pixel) space is not a reliable measure of semantic similarity. Maximizing slowness cor-

responds to minimizing the distance between adjacent frames in code space, therefore

neighbors in code space should correspond to temporal neighbors. This claim can be

tested by computing the nearest neighbors to a query frame in code space, and verify-

ing whether they correspond to its temporal neighbors. However, the features must also

be discriminative so as not to collapse temporally distant samples. In order to make

this trade-off in a principled manner, a dataset comprised of short natural scenes was

collected. Hyper-parameters are selected which maximize the so called ”temporal co-

herence” of the features which define the metric. We define the temporal coherence of

a metric GW(·) as the area under the precision-recall curve, where precision is defined

as the proportion of the nearest neighbors that come from the same scene, and recall is

defined as the proportion of frames recalled from that scene. In our experiments, we

used the middle frame from each scene as the query.

However, temporal coherence can be a very weak measure of discriminability; it
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merely requires that scenes be easy to disambiguate in feature space. If the scenes are

quite distinct, then maximizing temporal coherence directly can lead to weakly dis-

criminative features (e.g. color histograms can exhibit good temporal coherence). We

therefore evaluate the learned features on a more demanding task by assessing how well

the metric learned from the YouTube dataset transfers to a classification task on the

CIFAR-10 dataset. Average class-based precision is measured in feature space by using

the test set as the query images and finding nearest neighbors in the training set. Preci-

sion is defined as the proportion of nearest neighbors that have the same label. As on

the YouTube dataset we evaluate the average precision for the nearest 40 neighbors. The

CIFAR dataset contains considerably more interclass variability than the scenes in our

YouTube dataset, nevertheless many class instances are visually similar.

approximately 150, 000 frames extracted from YouTube videos. Of these, approxi-

mately 20, 000 frames were held out for testing. The training and test set frames were

collected from separate videos. The videos were automatically segmented into scenes

of variable length (2-40 frames) by detecting large L2 changes between adjacent frames.

Each color frame was down-sampled to a 32×32 spatial resolution and the entire dataset

was ZCA whitened [39]. Six scenes from the test set are shown in Figure 5.4 where the

first scene (top row) is incorrectly segmented.

We compare the features learned by minimizing the loss in Equation 6.1 with the

features learned by minimizing DrLIM (Equation 5.1) and group sparsity (Equation

5.3) losses. Once trained, the convolution, rectification, and pooling stages are used to

transform the dataset into the feature space. We use cosine distance in feature space

to determine the nearest neighbors and select hyperparmeters for each method which

maximize the temporal coherence measure.

We trained two layers of our model using greedy layer-wise training [5]. The first
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layer model contains a filter bank consisting of 64 kernels with 9 × 9 spatial support.

The first L2 pooling layer computes the local modulus volumetrically, that is across

feature maps in non-overlapping groups of four and spatially in 2 × 2 non-overlapping

neighborhoods. Thus the output feature vector of the first stage (z1) has dimensions

16 × 16 × 16 (4096). Our second stage consists of 64 5 × 5 convolutional filters, and

performs 4×4 spatial pooling producing a second layer code (z2) of dimension 64×4×4

(1024). The output of the second stage corresponds to a dimension reduction by a factor

of three relative to the input dimension.

Identical one and two-layer architectures were trained using the group sparsity prior,

similar to [36]. As in the slowness model, the two layer architecture was trained greedily.

Using the same notation as Equation 6.1, the corresponding loss can be written as:

L(xt,W) =
∑
τ

‖Wdhτ − xτ‖2 + α‖hτ‖Pi (5.3)

Finally, identical one and two-layer architectures were also trained by minimizing the

DrLIM loss in Equation 5.1. Negative pairs, corresponding to temporally non-adjacent

frames, were independently selected at random. In order to achieve the best temporal

precision-recall performance, we found that each mini-batch should consist of a large

proportion of negative to positive samples (at least five-to-one). Unlike the auto-encoder

methods, the two layer architecture was trained jointly rather than greedily.

results on the YouTube dataset for a single frame (left column) in eight spaces. The

top row shows the nearest neighbors in pixel space. The second row shows the near-

est neighbors in pixel space after ZCA whitening. The next six rows show the nearest

neighbors in feature space for one and two layer feature transformations learned with

slowness, group sparsity, and DrLIM. The resulting first-layer filters and precision-recall
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Figure 5.4: Six scenes from our YouTube dataset

(a) (b) (c) (d)

Figure 5.5: Pooled convolutional dictionaries (decoders) learned with: (a) DrLIM and
(b) sparsity only, (c) group sparsity, and (d) sparsity and slowness. Groups of four
features that were pooled together are depicted as horizontally adjacent filters.

curves are shown in Figures 6.3 and 5.7, respectively. Figures 5.5b and 5.5d show the

decoders of two one-layer models trained with β = 0, 2, respectively, and a constant

value of α. The filter bank trained with β = 0 exhibits no coherence within each pool

group; the filters are not visually similar nor do they tend to co-activate at spatially

neighboring locations. Most groups in the filter bank trained with slowness tend be vi-

Model Optimization Temporal AUC Class AUC
Our Model Layer1 — 0.262 0.296
Our Model Layer2 Greedy 0.300 0.310
DrLIM Layer1 — 0.188 0.221
DrLIM Layer2 Joint 0.378 0.268
Group L1 Layer1 — 0.231 0.266
Group L1 Layer2 Greedy 0.285 0.281

Table 5.1: Comparison of Temporal and Class AUCs
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Figure 5.6: Query results in the (a) video and (b) CIFAR-10 datasets. Each row corre-
sponds to a different feature space in which the queries were performed; numbers (1 or
2) denote the number of convolution-pooling layers.
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Figure 5.7: Precision-Recall curves corresponding to the YouTube (a) and CIFAR-10
(b) dataset.
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sually similar, corresponding to similar colors and/or geometric structures. The features

learned by minimizing the DrLIM loss (Equation 5.1), which more directly optimizes

temporal coherence, have much more high frequency content than the filters learned

with any of the auto-encoder methods. Nevertheless, some filters within the same pool

group exhibit similar geometric and color structure (Figure 5.5a). The features learned

with a group-sparsity regularizer leads to nearly identical features (and nearly identical

activations) within each pool group (Figure 5.5c). This is not surprising because group

sparsity promotes co-activation of the features within each pool group, by definition. We

have also tried including an individual sparsity prior, as in Equation 6.1, in order to en-

courage independence among the pooled features. However this has lead to significantly

worse temporal-coherence performance.

Figure 5.6b shows the result of two queries in the CIFAR-10 dataset. The corre-

sponding precision-recall curves are shown in Figure 5.7b. One-layer DrLIM (4096 di-

mensional) exhibit poor performance in both the temporal and class-based recall tasks.

In contrast, jointly trained two-layer DrLIM features (1024 dimensional) exhibit excel-

lent temporal coherence, outperforming all other models by a large margin. Although

better than the first layer, second layer features perform significantly worse on the CI-

FAR task than even the first-layer features learned by our model. Furthermore, the

nearest neighbors in both the one and two-layer feature spaces learned with DrLIM are

often neither visually nor semantically similar (see Figure 5.6b). The conclusion which

can be drawn from this result is that directly maximizing temporal coherence alone is

not a sufficient condition for achieving a semantically (or even visually) coherent fea-

tures. However, combining it with reconstruction and sparsity, as in our model, yields

the most semantically discriminative features. Although significantly better than the

features learned with DrLIM, the features learned with group sparsity exhibit slightly
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weaker temporal coherence and significantly worse class-based recall. Note that since

all the features within a pool group are practically identical, the invariants captured by

the pool groups are limited to local translations due to the spatial pooling. As a fi-

nal comparison, we trained a four layer ConvNet with supervision on CIFAR-10, this

network achieved approximately 80% classification accuracy on the test set. The archi-

tecture of the first two stages of the ConvNet is identical to the architecture of the first

and second unsupervised stages. The precision curve corresponding to the first layer of

the ConvNet is shown in Figure 5.7b, which is matched by our-model’s second layer at

high recall.

5.6 Conclusion

Video data provides a virtually infinite source of information to learn meaningful

and complex visual invariances. While temporal slowness is an attractive prior for good

visual features, in practice it involves optimizing conflicting objectives that balance in-

variance and discriminability. In other words, perfectly slow features cannot be informa-

tive. An alternative is to replace the small temporal velocity prior with small temporal

acceleration, leading to a criteria that linearizes observed variability. The resulting rep-

resentation offers potential advantages, such as extraction of both locally invariant and

locally covariant features. Although pooling representations are widespread in visual

and audio recognition architectures, much is left to be understood. In particular, a major

question is how to learn a stacked pooling representation, such that its invariance prop-

erties are boosted while controlling the amount of information lost at each layer. This

could be possible by replacing the linear decoder of the proposed model with a non-

linear decoder which can be used to reconstruct the input from pooled representations.
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Slow feature learning is merely one way to learn from temporally coherent data. In

this work we have provided an auto-encoder formulation of the problem and shown that

the resulting features are more stable to naturally occurring temporal variability, while

maintaining discriminative power.
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Chapter 6

Learning to Linearize under

Uncertainty

6.1 Introduction

In this chapter we continue our exploration of using time as a weak form of super-

vision by introducing a new architecture and loss for training deep feature hierarchies

that linearize the transformations observed in unlabeled natural video sequences. This

is done by training a generative model to predict video frames. We also address the

problem of inherent uncertainty in prediction by introducing latent variables that are

non-deterministic functions of the input into the network architecture.

Recently there has been a flurry of work on learning features from video using vary-

ing degrees of supervision [66][57][65]. Temporal coherence in video can be considered

as a form of weak supervision that can be exploited for feature learning. More precisely,

if we assume that data occupies some low dimensional “manifold” in a high dimensional

space, then videos can be considered as one-dimensional trajectories on this manifold
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parametrized by time. Many unsupervised learning algorithms can be viewed as vari-

ous parameterizations (implicit or explicit) of the data manifold [5]. For instance, sparse

coding implicitly assumes a locally linear model of the data manifold [50]. In this work,

we assume that deep convolutional networks are good parametric models for natural

data. Parameterizations of the data manifold can be learned by training these networks

to linearize short temporal trajectories, thereby implicitly learning a local parametriza-

tion.

In this work we cast the linearization objective as a frame prediction problem. As

in many other unsupervised learning schemes, this necessitates a generative model.

Several recent works have also trained deep networks for the task of frame prediction

[57][66][65]. However, unlike other works that focus on prediction as a final objective,

in this work prediction is regarded as a proxy for learning representations. We introduce

a loss and architecture that addresses two main problems in frame prediction: (1) min-

imizing L2 error between the predicted and actual frame leads to unrealistically blurry

predictions, which potentially compromises the learned representation, and (2) copying

the most recent frame to the input seems to be a hard-to-escape trap of the objective

function, which results in the network learning little more than the identity function. We

argue that the source of blur partially stems from the inherent unpredictability of natural

data; in cases where multiple valid predictions are plausible, a deterministic network

will learn to average between all the plausible predictions. To address the first problem

we introduce a set of latent variables that are non-deterministic functions of the input,

which are used to explain the unpredictable aspects of natural videos. The second prob-

lem is addressed by introducing an architecture that explicitly formulates the prediction

in the linearized feature space.

The paper is organized as follows. Section 6.2 reviews relevant prior work. Section
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6.3 introduces the basic architecture used for learning linearized representations. Sub-

section 6.3.1 introduces “phase-pooling”–an operator that facilitates linearization by in-

ducing a topology on the feature space. Subsection 6.3.2 introduces a latent variable

formulation as a means of learning to linearize under uncertainty. Section 6.4 presents

experimental results on relatively simple datasets to illustrate the main ideas of our work.

Finally, Section ?? offers directions for future research.

6.2 Prior Work

This work was heavily inspired by the philosophy revived by Hinton et al. [31],

which introduced “capsule” units. In that work, an equivariant representation is learned

by the capsules when the true latent states were provided to the network as implicit tar-

gets. Our work allows us to move to a more unsupervised setting in which the true latent

states are not only unknown, but represent completely arbitrary qualities. This was made

possible with two assumptions: (1) that temporally adjacent samples also correspond to

neighbors in the latent space, (2) predictions of future samples can be formulated as lin-

ear operations in the latent space. In theory, the representation learned by our method is

very similar to the representation learned by the “capsules”; this representation has a lo-

cally stable “what” component and a locally linear, or equivariant “where” component.

Theoretical properties of linearizing features were studied in [15].

Several recent works propose schemes for learning representations from video which

use varying degrees of supervision[57][66][65][26]. For instance, [65] assumes that the

pre-trained network from [40] is already available and training consists of learning to

mimic this network. Similarly, [66] learns a representation by receiving supervision

from a tracker. This work is more closely related to fully unsupervised approaches
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for learning representations from video such as [26][38][12][67][47]. It is most related

to [57] which also trains a decoder to explicitly predict video frames. Our proposed

architecture was inspired by those presented in in [54] and [71].

6.3 Learning Linearized Representations

Our goal is to obtain a representation of each input sequence that varies linearly in

time by transforming each frame individually. Furthermore, we assume that this trans-

formation can be learned by a deep, feed forward network referred to as the encoder,

denoted by the function FW . Denote the code for frame xt by zt = FW(xt). Assume

that the dataset is parameterized by a temporal index t so it is described by the sequence

X = {..., xt−1, xt, xt+1, ...} with a corresponding feature sequence produced by the encoder

Z = {..., zt−1, zt, zt+1, ...}. Thus our goal is to train FW to produce a sequence Z whose

average local curvature is smaller than sequence X. A scale invariant local measure of

curvature is the cosine distance between the two vectors formed by three temporally

adjacent samples. However, minimizing the curvature directly can result in the trivial

solutions: zt = ct ∀ t and zt = c ∀ t. These solutions are trivial because they are vir-

tually uninformative with respect to the input xt and therefore cannot be a meaningful

representation of the input. To avoid this solution, we also minimize the prediction error

in the input space. The predicted frame is generated in two steps: (i) linearly extrap-

olation in code space to obtain a predicted code ẑt+1 = a[zt zt−1]T followed by (ii) a

decoding with GW , which generates the predicted frame x̂t+1 = GW(ẑt+1). For example,

if a = [2,−1] the predicted code ẑt+1 corresponds to a constant speed linear extrapola-

tion of zt and zt−1. The L2 prediction error is minimized by jointly training the encoder

and decoder networks. Note that minimizing prediction error alone will not necessarily

65



time

x y z

(a)

x−Intensity

Three−Pixel Video

y−Intensity

z−
In

te
ns

ity

(b)

Figure 6.1: (a) A video generated by translating a Gaussian intensity bump over a three
pixel array (x,y,z), (b) the corresponding manifold parametrized by time in three dimen-
sional space

lead to low curvature trajectories in Z since the decoder is unconstrained; the decoder

may learn a many to one mapping which maps different codes to the same output image

without forcing them to be equal. To prevent this, we add an explicit curvature penalty

to the loss, corresponding to the cosine distance between (zt − zt−1) and (zt+1 − zt). The

complete loss to minimize is:

L =
1
2
‖GW(a

[
zt zt−1

]T

) − xt+1‖22 − λ
(zt − zt−1)T (zt+1 − zt)
‖zt − zt−1‖‖zt+1 − zt‖

(6.1)

This feature learning scheme can be implemented using an autoencoder-like network

with shared encoder weights.

6.3.1 Phase Pooling

Thus far we have assumed a generic architecture for FW and GW . We now con-

sider custom architectures and operators that are particularly suitable for the task of

linearization. To motivate the definition of these operators, consider a video generated
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Figure 6.2: The basic linear prediction architecture with shared weight encoders

by translating a Gaussian “intensity bump” over a three pixel region at constant speed.

The video corresponds to a one dimensional manifold in three dimensional space, i.e.

a curve parameterized by time (see Figure 6.1). Next, assume that some convolutional

feature detector fires only when centered on the bump. Applying the max-pooling oper-

ator to the activations of the detector in this three-pixel region signifies the presence of

the feature somewhere in this region (i.e. the “what”). Applying the argmax operator

over the region returns the position (i.e. the “where”) with respect to some local coor-

dinate frame defined over the pooling region. This position variable varies linearly as

the bump translates, and thus parameterizes the curve in Figure 6.1b. These two chan-

nels, namely the what and the where, can also be regarded as generalized magnitude m

and phase p, corresponding to a factorized representation: the magnitude represents the

active set of parameters, while the phase represents the set of local coordinates in this

active set. We refer to the operator that outputs both the max and argmax channels as

the “phase-pooling” operator.

In this example, spatial pooling was used to linearize the translation of a fixed fea-

ture. More generally, the phase-pooling operator can locally linearize arbitrary trans-

formations if pooling is performed not only spatially, but also across features in some

topology.

In order to be able to back-propagate through p, we define a soft version of the max
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and argmax operators within each pool group. For simplicity, assume that the encoder

has a fully convolutional architecture which outputs a set of feature maps, possibly of

a different resolution than the input. Although we can define an arbitrary topology

in feature space, for now assume that we have the familiar three-dimensional spatial

feature map representation where each activation is a function z( f , x, y), where x and y

correspond to the spatial location, and f is the feature map index. Assuming that the

feature activations are positive, we define our soft “max-pooling” operator for the kth

neighborhood Nk as:

mk =
∑
Nk

z( f , x, y)
eβz( f ,x,y)∑

Nk
eβz( f ′,x′,y′) ≈ max

Nk
z( f , x, y), (6.2)

where β ≥ 0. Note that the fraction in the sum is a softmax operation (parametrized

by β), which is positive and sums to one in each pooling region. The larger the β,

the closer it is to a unimodal distribution and therefore the better mk approximates the

max operation. On the other hand, if β = 0, Equation 6.2 reduces to average-pooling.

Finally, note that mk is simply the expected value of z (restricted to Nk) under the softmax

distribution.

Assuming that the activation pattern within each neighborhood is approximately uni-

modal, we can define a soft versions of the argmax operator. The vector pk approximates

the local coordinates in the feature topology at which the max activation value occurred.

Assuming that pooling is done volumetrically, that is, spatially and across features, pk

will have three components. In general, the number of components in pk is equal to the

dimension of the topology of our feature space induced by the pooling neighborhood.

The dimensionality of pk can also be interpreted as the maximal intrinsic dimension of

the data. If we define a local standard coordinate system in each pooling volume to
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be bounded between -1 and +1, the soft “argmax-pooling” operator is defined by the

vector-valued sum:

pk =
∑
Nk


f

x

y


eβz( f ,x,y)∑

Nk
eβz( f ′,x′,y′) ≈ arg max

Nk

z( f , x, y), (6.3)

where the indices f , x, y take values from -1 to 1 in equal increments over the pooling

region. Again, we observe that pk is simply the expected value of
[

f x y
]T

under the

softmax distribution.

The phase-pooling operator acts on the output of the encoder, therefore it can simply

be considered as the last encoding step. Correspondingly we define an “un-pooling”

operation as the first step of the decoder, which produces reconstructed activation maps

by placing the magnitudes m at appropriate locations given by the phases p.

Because the phase-pooling operator produces both magnitude and phase signals for

each of the two input frames, it remains to define the predicted magnitude and phase of

the third frame. In general, this linear extrapolation operator can be learned, however

“hard-coding” this operator allows us to place implicit priors on the magnitude and

phase channels. The predicted magnitude and phase are defined as follows:

mt+1 = mt+mt−1

2 (6.4)

pt+1 = 2pt − pt−1 (6.5)

Predicting the magnitude as the mean of the past imposes an implicit stability prior on

m, i.e. the temporal sequence corresponding to the m channel should be stable between

adjacent frames. The linear extrapolation of the phase variable imposes an implicit linear
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prior on p. Thus such an architecture produces a factorized representation composed of

a locally stable m and locally linearly varying p. When phase-pooling is used curvature

regularization is only applied to the p variables. The full prediction architecture is shown

in Figure 6.2.

6.3.2 Addressing Uncertainty

Natural video can be inherently unpredictable; objects enter and leave the field of

view, and out of plane rotations can also introduce previously invisible content. In this

case, the prediction should correspond to the most likely outcome that can be learned

by training on similar video. However, if multiple outcomes are present in the training

set then minimizing the L2 distance to these multiple outcomes induces the network to

predict the average outcome. In practice, this phenomena results in blurry predictions

and may lead the encoder to learn a less discriminative representation of the input. To

address this inherent unpredictability we introduce latent variables δ to the prediction

architecture that are not deterministic functions of the input. These variables can be

adjusted using the target xt+1 in order to minimize the prediction L2 error. The inter-

pretation of these variables is that they explain all aspects of the prediction that are not

captured by the encoder. For example, δ can be used to switch between multiple, equally

likely predictions. It is important to control the capacity of δ to prevent it from explain-

ing the entire prediction on its own. Therefore δ is restricted to act only as a correction

term in the code space output by the encoder. To further restrict the capacity of δ we

enforce that dim(δ) � dim(z). More specifically, the δ-corrected code is defined as:

ẑt+1
δ = zt + (W1δ) � a

[
zt zt−1

]T

(6.6)
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Where W1 is a trainable matrix of size dim(δ) × dim(z), and � denotes the component-

wise product. During training, δ is inferred (using gradient descent) for each training

sample by minimizing the loss in Equation 6.7. The corresponding adjusted ẑt+1
δ is

then used for back-propagation through W and W1. At test time δ can be selected via

sampling, assuming its distribution on the training set has been previously estimated.

L = min
δ
‖GW(ẑt+1

δ ) − xt+1‖22 − λ
(zt − zt−1)T (zt+1 − zt)
‖zt − zt−1‖‖zt+1 − zt‖

(6.7)

The following algorithm details how the above loss is minimized using stochastic gra-

dient descent:

Algorithm 1 Minibatch stochastic gradient descent training for prediction with uncer-
tainty. The number of δ-gradient descent steps (k) is treated as a hyper-parameter.

for number of training epochs do
Sample a mini-batch of temporal triplets {xt−1, xt, xt+1}

Set δ0 = 0
Forward propagate xt−1, xt through the network and obtain the codes zt−1, zt and the
prediction x̂t+1

0
for i =1 to k do

Compute the L2 prediction error
Back propagate the error through the decoder to compute the gradient ∂L

∂δi−1

Update δi = δi−1 − α
∂L
∂δi−1

Compute ẑt+1
δi

= zt + (W1δi) � a
[
zt zt−1

]T

Compute x̂t+1
i = GW(zt+1

δi )
end for
Back propagate the full encoder/predictor loss from Equation 6.7 using δk, and
update the weight matrices W and W1

end for

When phase pooling is used we allow δ to only affect the phase variables in Equation

6.5, this further encourages the magnitude to be stable and places all the uncertainty in

the phase.
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6.4 Experiments

The following experiments evaluate the proposed feature learning architecture and

loss. In the first set of experiments we train a shallow architecture on natural data and

visualize the learned features in order gain a basic intuition. In the second set of ex-

periments we train a deep architecture on simulated movies generated from the NORB

dataset. By generating frames from interpolated and extrapolated points in code space

we show that a linearized representation of the input is learned. Finally, we explore the

role of uncertainty by training on only partially predictable sequences, we show that our

latent variable formulation can account for this uncertainty enabling the encoder to learn

a linearized representation even in this setting.

6.4.1 Shallow Architecture Trained on Natural Data

To gain an intuition for the features learned by a phase-pooling architecture let us

consider an encoder architecture comprised of the following stages: convolutional filter

bank, rectifying point-wise nonlinearity, and phase-pooling. The decoder architecture is

comprised of an un-pooling stage followed by a convolutional filter bank. This architec-

ture was trained on simulated 32 × 32 movie frames taken from YouTube videos [26].

Each frame triplet is generated by transforming still frames with a sequence of three rigid

transformations (translation, scale, rotation). More specifically let A be a random rigid

transformation parameterized by τ, and let x denote a still image reshaped into a column

vector, the generated triplet of frames is given by { f1 = Aτ= 1
3
x, f2 = Aτ= 2

3
x, f3 = Aτ=1x}.

Two variants of this architecture were trained, their full architecture is summarized in the

first two lines of Table 6.1. In Shallow Architecture 1, phase pooling is performed spa-

tially in non-overlapping groups of 4×4 and across features in a one-dimensional topol-
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ogy consisting of non-overlapping groups of four. Each of the 16 pool-groups produce

a code consisting of a scalar m and a three-component p = [p f , px, py]T (correspond-

ing to two spatial and one feature dimensions); thus the encoder architecture produces

a code of size 16 × 4 × 8 × 8 for each frame. The corresponding filters whose activa-

tions were pooled together are laid out horizontally in groups of four in Figure 6.3(a).

Note that each group learns to exhibit a strong ordering corresponding to the linearized

variable p f . Because global rigid transformations can be locally well approximated by

translations, the features learn to parameterize local translations. In effect the network

learns to linearize the input by tracking common features in the video sequence. Unlike

the spatial phase variables, p f can linearize sub-pixel translations. Next, the architecture

described in column 2 of Table 6.1 was trained on natural movie patches with the natural

motion present in the real videos. The architecture differs in only in that pooling across

features is done with overlap (groups of 4, stride of 2). The resulting decoder filters are

displayed in Figure 6.3 (b). Note that pooling with overlap introduces smoother transi-

tions between the pool groups. Although some groups still capture translations, more

complex transformations are learned from natural movies.

6.4.2 Deep Architecture trained on NORB

In the next set of experiments we trained deep feature hierarchies that have the ca-

pacity to linearize a richer class of transformations. To evaluate the properties of the

learned features in a controlled setting, the networks were trained on simulated videos

generated using the NORB dataset rescaled to 32 × 32 to reduce training time. The

simulated videos are generated by tracing constant speed trajectories with random start-

ing points in the two-dimensional latent space of pitch and azimuth rotations. In other

words, the models are trained on triplets of frames ordered by their rotation angles. As
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Encoder Prediction Decoder

Shallow Architecture 1 Conv+ReLU 64 × 9 × 9 Average Mag. Conv 64 × 9 × 9Phase Pool 4 Linear Extrap. Phase

Shallow Architecture 2 Conv+ReLU 64 × 9 × 9 Average Mag. Conv 64 × 9 × 9Phase Pool 4 stride 2 Linear Extrap. Phase

Deep Architecture 1 None

FC+ReLU 8192 × 8192
Conv+ReLU 16 × 9 × 9 Reshape 32 × 16 × 16
Conv+ReLU 32 × 9 × 9 SpatialPadding 8 × 8
FC+ReLU 8192 × 4096 Conv+ReLU 16 × 9 × 9

SpatialPadding 8 × 8
Conv 1 × 9 × 9

Deep Architecture 2 Linear Extrapolation

FC+ReLU 4096 × 8192
Conv+ReLU 16 × 9 × 9 Reshape 32 × 16 × 16
Conv+ReLU 32 × 9 × 9 SpatialPadding 8 × 8
FC+ReLU 8192 × 4096 Conv+ReLU 16 × 9 × 9

SpatialPadding 8 × 8
Conv 1 × 9 × 9

Deep Architecture 3

Unpool 8 × 8
Conv+ReLU 16 × 9 × 9 FC+ReLU 4096 × 8192
Conv+ReLU 32 × 9 × 9 Average Mag. Reshape 32 × 16 × 16
FC+ReLU 8192 × 4096 Linear Extrap. Phase SpatialPadding 8 × 8

Reshape 64 × 8 × 8 Conv+ReLU 16 × 9 × 9
Phase Pool 8 × 8 SpatialPadding 8 × 8

Conv 1 × 9 × 9

Table 6.1: Summary of architectures

before, presented with two frames as input, the models are trained to predict the third

frame. Recall that prediction is merely a proxy for learning linearized feature repre-

sentations. One way to evaluate the linearization properties of the learned features is to

linearly interpolate (or extrapolate) new codes and visualize the corresponding images

via forward propagation through the decoder. This simultaneously tests the encoder’s

capability to linearize the input and the decoder’s (generative) capability to synthesize

images from the linearized codes. In order to perform these tests we must have an ex-

plicit code representation, which is not always available. For instance, consider a simple

scheme in which a generic deep network is trained to predict the third frame from the

concatenated input of two previous frames. Such a network does not even provide an

explicit feature representation for evaluation. A simple baseline architecture that affords

this type of evaluation is a Siamese encoder followed by a decoder, this exactly cor-
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(a) Shallow Architecture 1 (b) Shallow Architecture 2

Figure 6.3: Decoder filters learned by shallow phase-pooling architectures

(a) (b)

Figure 6.4: (a) Test samples input to the network (b) Linear interpolation in code space
learned by our Siamese-encoder network

responds to our proposed architecture with the linear prediction layer removed. Such

an architecture is equivalent to learning the weights of the linear prediction layer of

the model shown in Figure 6.2. In the following experiment we evaluate the effects of:

(1) fixing v.s. learning the linear prediction operator, (2) including the phase pooling

operation, (3) including explicit curvature regularization (second term in Equation 6.1).

Let us first consider Deep Architecture 1 summarized in Table 6.1. In this archi-

tecture a Siamese encoder produces a code of size 4096 for each frame. The codes

corresponding to the two frames are concatenated together and propagated to the de-

coder. In this architecture the first linear layer of the decoder can be interpreted as a
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learned linear prediction layer. Figure 6.4a shows three frames from the test set corre-

sponding to temporal indices 1,2, and 3, respectively. Figure 6.4b shows the generated

frames corresponding to interpolated codes at temporal indices: 0, 0.5, 1, 1.5, 2, 2.5, 3.

The images were generated by propagating the corresponding codes through the de-

coder. Codes corresponding to non-integer temporal indices were obtained by linearly

interpolating in code space.

Deep Architecture 2 differs from Deep Architecture 1 in that it generates the pre-

dicted code via a fixed linear extrapolation in code space. The extrapolated code is then

fed to the decoder that generates the predicted image. Note that the fully connected

stage of the decoder has half as many free parameters compared to the previous archi-

tecture. This architecture is further restricted by propagating only the predicted code

to the decoder. For instance, unlike in Deep Architecture 1, the decoder cannot copy

any of the input frames to the output. The generated images corresponding to this ar-

chitecture are shown in Figure 6.5a. These images more closely resemble images from

the dataset. Furthermore, Deep Architecture 2 achieves a lower L2 prediction error than

Deep Architecture 1.

Finally, Deep Architecture 3 uses phase-pooling in the encoder, and “un-pooling” in

the decoder. This architecture makes use of phase-pooling in a two-dimensional feature

space arranged on an 8× 8 grid. The pooling is done in a single group over all the fully-

connected features producing a feature vector of dimension 192 (64 × 3) compared to

4096 in previous architectures. Nevertheless this architecture achieves the best overall

L2 prediction error and generates the most visually realistic images (Figure 6.5b).
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(a) (b)

Figure 6.5: Linear interpolation in code space learned by our model. (a) no phase-
pooling, no curvature regularization, (b) with phase pooling and curvature regularization

(a) (b)

Figure 6.6: Interpolation results obtained by minimizing (a) Equation 6.1 and (b) Equa-
tion 6.7 trained with only partially predictable simulated video
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6.4.3 Uncertainty

In this subsection we compare the representation learned by minimizing the loss

in Equation 6.1 to Equation 6.7. Uncertainty is simulated by generating triplet se-

quences where the third frame is skipped randomly with equal probability, determined

by Bernoulli variable s. For example, the sequences corresponding to models with rota-

tion angles 0◦, 20◦, 40◦ and 0◦, 20◦, 60◦ are equally likely. Minimizing Equation 6.1 with

Deep Architecture 3 results in the images displayed in Figure 6.6a. The interpolations

are blurred due to the averaging effect discussed in Subsection 6.3.2. On the other hand

minimizing Equation 6.7 (Figure 6.6) partially recovers the sharpness of Figure 6.5b.

For this experiment, we used a three-dimensional, real valued δ. Moreover training a

linear predictor to infer binary variable s from δ (after training) results in a 94% test set

accuracy. This suggests that δ does indeed capture the uncertainty in the data.
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Chapter 7

Conclusion

Unsupervised learning remains an unsolved, ill-defined problem. However the re-

cent advent of deep learning has recast the problem as a representation, or feature learn-

ing problem. It is not clear what priors, supervision, or cross-sensor modalities are

necessary for learning a generic representation that can be transferred across multiple

problems. In this work we have mainly focused on the role of time as a source of weak

supervision for learning visual representations. Indeed it may be necessary to incorpo-

rate more sources of supervision (e.g. reinforcement learning), or perhaps it is matter

of building up the necessary model priors (e.g. three-dimensional world) in our models.

Another important problem in unsupervised feature learning is that of evaluation. How

do we evaluate the learned features? In this work we have shown that learned features

may exhibit properties that they were not explicitly trained to satisfy. For example, tem-

porally coherent features are also weakly semantically discriminative. Unsurprisingly,

however, they are not as discriminative as features explicitly trained to discriminate!

Although they may exhibit useful properties, they can not compete against features ex-

plicitly trained for the task on which they are evaluated. There are many important
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aspects of representation learning that were not explored in this thesis. For example,

the role of memory in the form of recurrent neural networks has recently experienced a

flurry of activity in the deep learning community. Other important issues include choos-

ing the right loss. For example, we have seen in Chapter 6 that L2 error is an inadequate

loss when it comes to predicting under uncertainty. In general finding the appropriate

loss can be as hard as finding the appropriate features. One promising approach is that of

Adversarial Networks [24], which can potentially turn the task of finding an appropriate

loss into a feature learning problem itself. Obviously, we do not know which combina-

tion of these seemingly necessary conditions for learning generic image representations

lead to a sufficient condition. Perhaps we should look back at the recent history of su-

pervised feature learning to make an educated guess on how the field of unsupervised

feature learning may progress. The basic ideas behind supervised feature learning using

convolutional nets have been established at least since the early 1990s [42, 23], how-

ever it was not until 2012 following a great success on the ImageNet competition did

the community begin to acknowledge deep feature learning as an essential component

of vision [40]. This success is mainly attributed to the culmination of multiple incre-

mental contributions such as the use of convolutional architectures, data augmentation,

dropout, and other “tricks”, in addition to the use of GPUs to accelerate training. Per-

haps unsupervised learning will be solved in the same manner: by the accumulation of

small contributions in the form of priors and natural sources of supervision. Perhaps the

pieces are already in place and its just a mater of training at a sufficiently large scale.

80



Bibliography

[1] Guillaume Alain and Yoshua Bengio. “What regularized auto-encoders learn
from the data-generating distribution”. In: The Journal of Machine Learning Re-
search 15.1 (2014), pp. 3563–3593.

[2] Joseph J Atick and A Norman Redlich. “What does the retina know about natural
scenes?” In: Neural computation 4.2 (1992), pp. 196–210.

[3] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”. In: SIAM journal on imaging sciences 2.1 (2009),
pp. 183–202.

[4] Yoshua Bengio, Aaron Courville, and Pierre Vincent. “Representation learning:
A review and new perspectives”. In: Pattern Analysis and Machine Intelligence,
IEEE Transactions on 35.8 (2013), pp. 1798–1828.

[5] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation Learn-
ing: A Review and New Perspectives. Tech. rep. University of Montreal, 2012.

[6] Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nico-
las Le Roux, and Marie Ouimet. “Out-of-sample extensions for lle, isomap, mds,
eigenmaps, and spectral clustering”. In: Advances in neural information process-
ing systems 16 (2004), pp. 177–184.

[7] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

81



[8] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”.
In: the Journal of machine Learning research 3 (2003), pp. 993–1022.
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