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motivations
Common methods for modelling sea-ice:

• “Continuous” methods (solving PDE’s, etc.) 
references: Hibler (1979), Dansereau et al. (2016 & 2019), and Hunke et al. (many papers)

• “Discrete” methods  (discrete element methods, etc.)
references: West et al. (2020), Hopkins (1991), and Manucharyan et al. (in prep.)
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*Note: a chunk of frozen 
sea water is referred to as 

an “ice-floe”

“Continuum” model, Dansereau et al. (2016)
Discrete element method, Sea Ice MURI 



domain discretization (using a graph):
definition: graph – a collection of nodes and edges

• Place nodes according to
some placement scheme

• Generate a partition
via Voronoi tessellation,

• Deduce edges from the partition. 

(for simplicity’s sake, we’re going to 
model a square domain and lattice)
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background: Markov models

definition: Markov model – a sequence of random variables (that we call states)

our state? sea-ice mass distribution, written 𝜃𝑡 for 𝑡 = {0,1,2, … }

𝜃𝑡 = 𝑚𝑝𝑡 , where 𝑚 is the total ice mass and 𝑝𝑡 is the ice mass 
probability density at time t.
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non-linear transition:

𝜃𝑡+1 = 𝑲(𝜃𝑡 , 𝜉)

𝑲 is called a transition 
kernel.

linear transition:

𝜃𝑡+1 = 𝜃𝑡𝐓𝜉
𝐓 is called a transition 

matrix.

𝜉 – fixed model parameters



advective (external) forces

5a counter-clockwise gyre

• Wind and ocean currents drive 
much of the advection of sea ice.

• On the domain Ω = 0,1 × [0,1], 
we define an external forcing field 
due to wind/ocean currents:

𝑉 ∶ Ω → ℝ2

Vector field 𝑉 should be sufficiently smooth and 
well behaved!



generating the transition probabilities

definition: transition probability – the probability of ice moving 
from node i to node j (𝑝𝑖,𝑗); elements of the transition matrix.

• Diagonal entries 𝑝𝑖,𝑖 indicate the probability of mass staying at
node i. We want 0 ≤ 𝑝𝑖,𝑖 ≤ 1 :

• As 𝑽 → 𝟎, 𝑝𝑖,𝑖 → 1 and vice versa.
• As Δ𝑡 → 𝟎, 𝑝𝑖,𝑖 → 1 and vice versa.
• Normalize by edge lengths (𝑝𝑖)

• Non-diagonal entries 𝑝𝑖,𝑗 in the transition matrix indicate the probability of 
mass leaving node i to node j.

𝑝𝑖,𝑗 = 1 − 𝑝𝑠𝑡𝑎𝑦 𝑃(mass moving from i → j 𝑔𝑖𝑣𝑒𝑛 mass is not staying)

𝑽

i

j
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𝑝𝑖,𝑖 =
1

1 + 𝑝𝑖Δ𝑡||𝑽||



projection method for mass transition
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Non-diagonal entries 𝑝𝑖,𝑗 indicate the probability of mass leaving node i.

𝑝𝑖,𝑗
′ =

max(0, 𝒆𝒊,𝒋 ⋅ 𝑽)

𝒆𝒊,𝒋
2 , 𝑝𝑖,𝑗 = 1 − 𝑝𝑖,𝑖

𝑝𝑖,𝑗′

σ𝑘∈𝑁 𝑖 𝑝𝑖,𝑘′
,

where 𝑁(𝑖) are the neighbors of node i.
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results:
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definition: steady state – if the system meets certain requirements 
(called ergodicity), then a unique steady state  exists; this is the 
described as 𝜋 = lim

𝑡→∞
𝜃𝑡 = lim

𝑛→∞
𝜃0𝐓

n for any initial state 𝜃0. 

note: 
from the definition, we see that 
π = π𝐓 must be true, and thus 
the steady state is an eigen -
vector of 𝐓! We can use this to 
predict steady-states without 
needed to simulate for long 
time-frames. 

predicted eigenstate for a gyre



more results: exploring particle methods
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particle simulation with 
100,000 particles in advection 

according to a 4-gyre



conclusions: future work:
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• We created a Markov model 
that simulates the advection of 
sea-ice mass in the Arctic.

• Using this model, we can make 
predictions about the long-term 
behavior/ergodicity of sea ice 
mass given a time-invariant 
external forcing field.

• This is a smaller part of a larger 
collaboration on modelling sea-
ice as a particle system.

• Use kinetic theory to inspire a 
large scale model.

• Use particle methods to inform  
new fields that give interesting 
insight and control over the 
model.

• Tweak parameters and non-
linear transition kernel 𝑲(𝜃𝑡 , 𝜉) 
to better reflect the dynamics of 
sea-ice.



thanks for listening!

any questions?

sean mackin

my sweet baby, (mini) cooper mackin@nyu.edu 
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