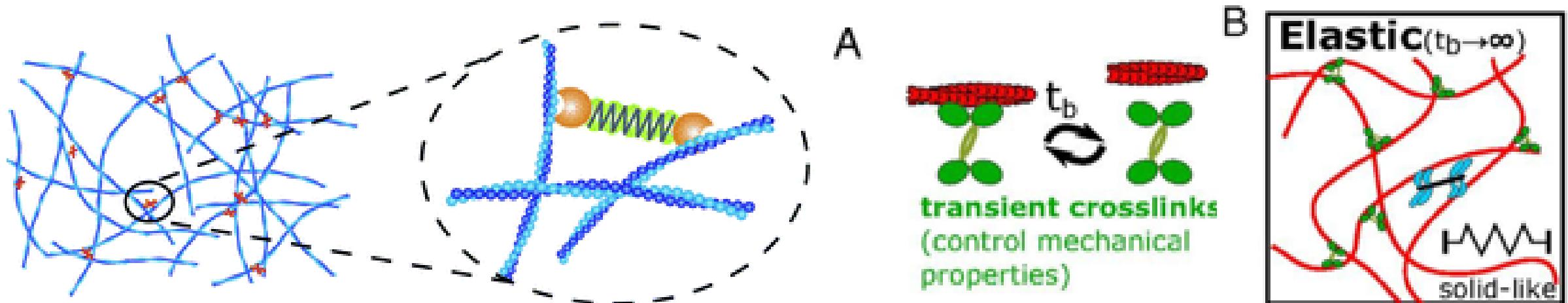


Reaction-Diffusion Modelling for the Cross- Linking of Actin Gels

KISHORE BASU, ONDREJ MAXIAN, ALEKSANDAR DONEV

Background

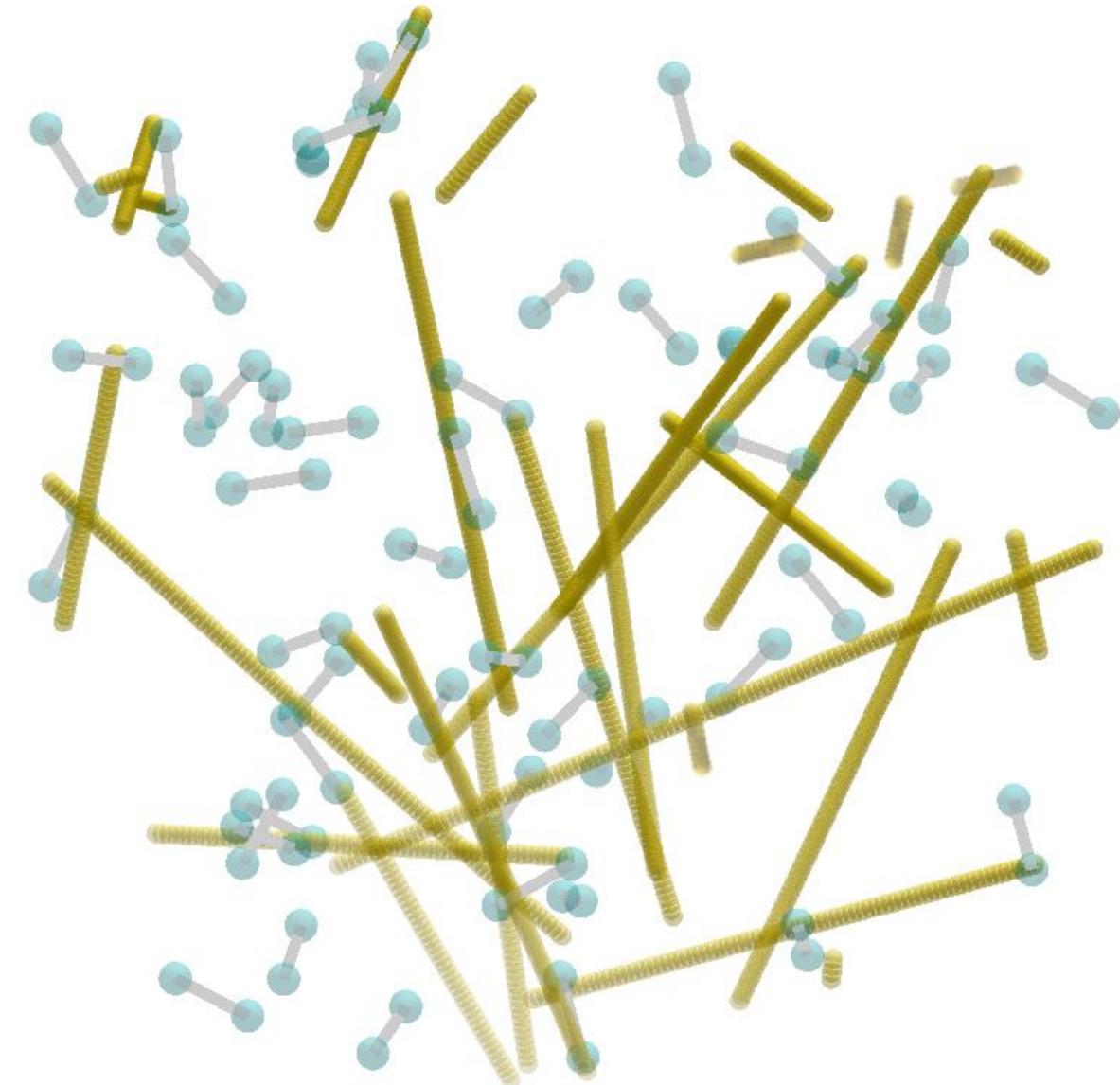


What makes this difficult:

- Theory difficult: Highly dependent on the geometry of the actin network
- Simulations difficult: Diffusion controlled, limiting step is the diffusion, not the reaction.
- Diffusion controlled → want large time step

My goal:

- Add **dimers** to reaction-diffusion code (Stochastic Reactive Brownian Dynamics) in Fortran 95
- Develop time integrator that allows large time step size



How do **microscopic parameters**, such as the reaction rate and reaction radius, change the **macroscopic properties** of the cytoskeleton?

\mathbf{r}_1 – position of particle 1

\mathbf{r}_2 – position of particle 2

dW – white noise

k – spring constant

μ – mobility coefficient

l_0 – rest length

$l = \|\mathbf{r}_1 - \mathbf{r}_2\|$

k_b – Boltzmann's constant

$D = k_b T \mu$ – diffusion coeff

T – Temperature

\mathbf{r}_{cm} – centre of mobility

$$F_i = k \mu_d \left(\frac{l_0 - l}{l} \right) \mathbf{r}_d$$

$$\mu_d = \mu_1 + \mu_2$$

$$\mathbf{u} = \frac{\mathbf{r}_1 - \mathbf{r}_2}{l}$$

$$\mathbf{r}_d = \mathbf{r}_1 - \mathbf{r}_2$$

Overdamped Langevin Equation for Cross-Linkers

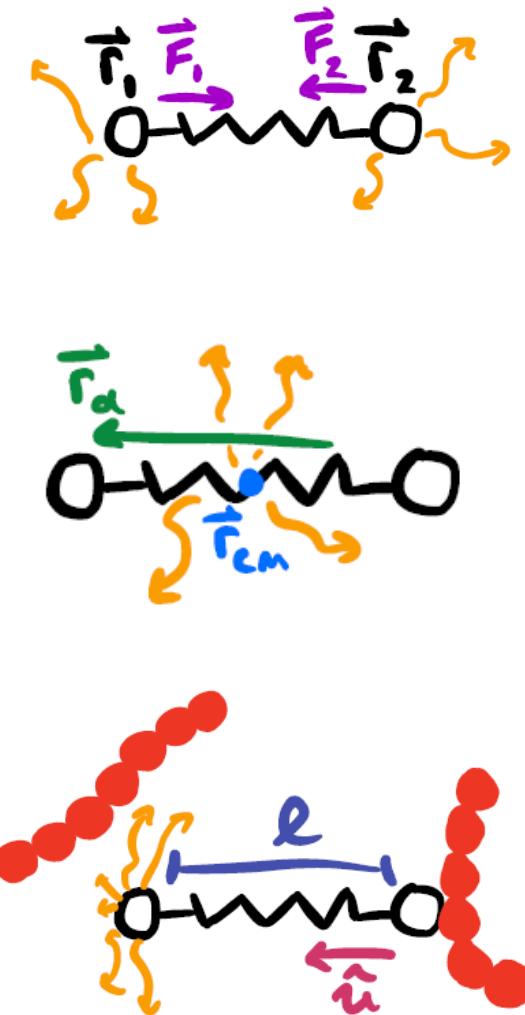
$$d\mathbf{r}_i = \mu_i \mathbf{F}_i dt + \sqrt{2D_i} dW_i$$

$$d\mathbf{r}_{cm} = \sqrt{2D_{cm}} dW_{cm}$$

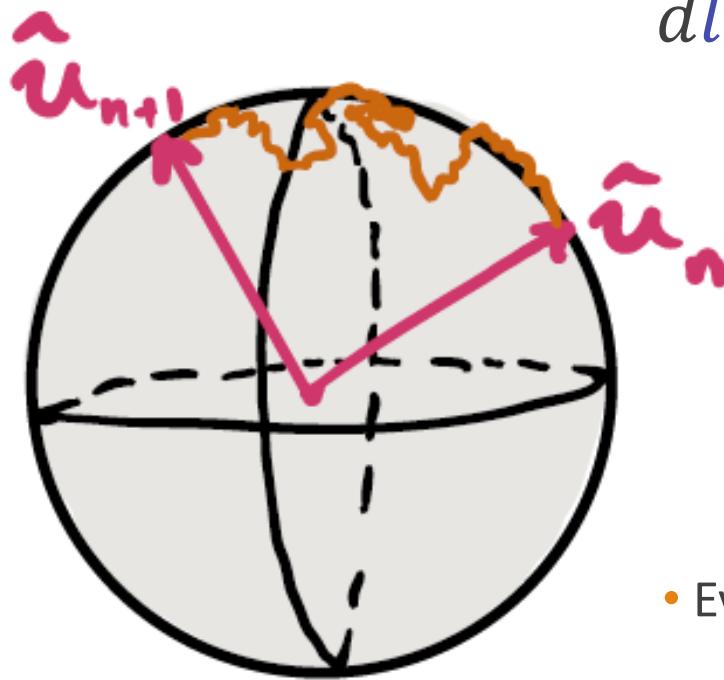
$$d\mathbf{r}_d = \mu_d \mathbf{F}_d dt + \sqrt{2D_d} dW_d$$

$$dl = \left((l_0 - l)k\mu_d + \frac{2D_d}{l} \right) dt + \sqrt{2D_d} dW_l$$

$$d\mathbf{u} = \frac{-2D_d}{l^2} \mathbf{u} dt + \frac{\sqrt{2D_d}}{l} \mathbf{u} \times dW$$



Time-Marching Scheme



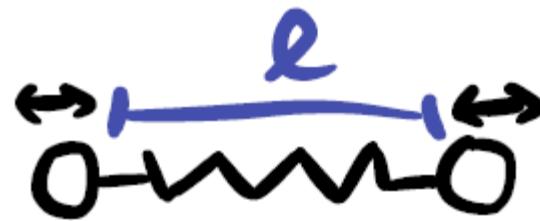
$$dl = \left((l_0 - l)k\mu_d + \frac{2D_d}{l} \right) dt + \sqrt{2D_d} dW_l$$

- Used the Implicit Trapezoidal method

$$d\mathbf{u} = \frac{-2D_d}{l^2} \mathbf{u} dt + \frac{\sqrt{2D_d}}{l} \mathbf{u} \times dW$$

- Euler-Lie integrator
- Evolves Brownian motion on the unit sphere using rotations

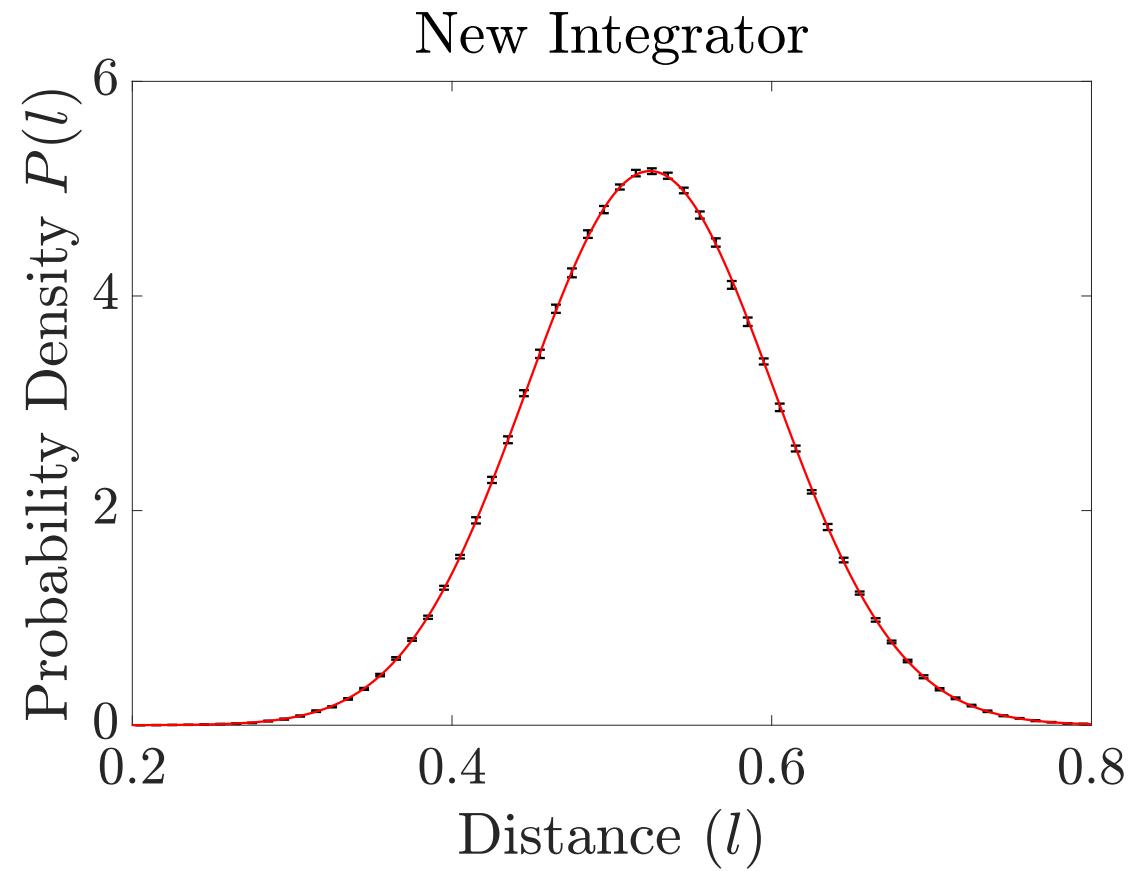
How do we know our results are correct?



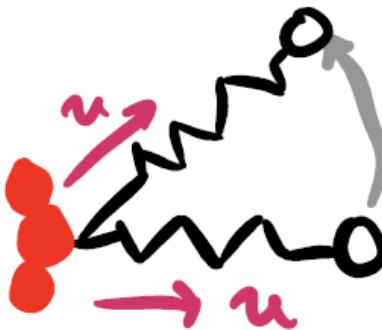
Gibbs-Boltzmann Distribution

$$dP(l) = \frac{1}{Z} l^2 \exp\left(\frac{-k(l - l_0)^2}{2 k_b T}\right) dl$$

Z – Normalizing Factor



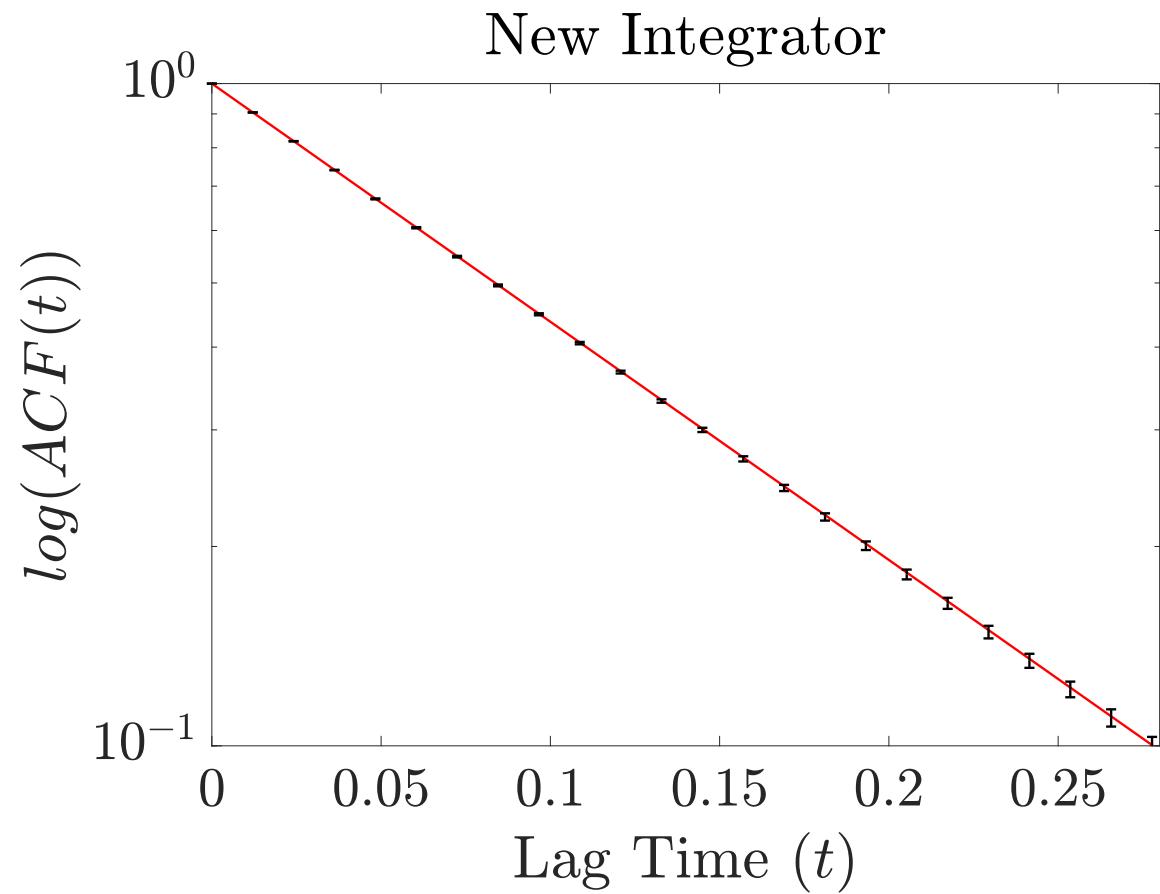
How do we know our results are correct?



$$ACF(t) := \langle \mathbf{u}(t + t_0) \cdot \mathbf{u}(t_0) \rangle$$

$$ACF(t) = \exp\left(-\frac{|t|}{\tau_r}\right)$$

$$\tau_r = \frac{l_0^2}{2D_d}$$



Future Work

- Add reverse reactions to allow for unbinding
- Measure the macroscopic rate of binding
- Real CLs are cylindrical, parallel/perpendicular mobilities

