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Abstract

In Optimal Transportation one seeks to construct an optimal mapping
between two given distributions. In this paper, we consider a variant of
this problem, suited for change detection. From this standpoint samples
drawn from both distributions are given, yet the underlying distribution
is unknown. We detail a numerical scheme for calculating the Optimal
map given a distance squared cost.

1 Introduction

Systems often change in ways which tend to minimize some kind of cost. It
might, therefore, stand to reason that this change could be linked to optimal
transport and that, given the correct cost function, solving the optimal transport
map between the state of a system before and after change may serve to detect
what change has occurred. This raises a need for a numerical method to solve
optimal transport problems, in particular, ‘statistical’ problems in which the
initial and final states of the system are known through samples rather than
their distributions. In this paper we detail a method given in [Essid et al., 2018]
and how it may be applied to change detection.

The seminal problem to the theory of Optimal Transport was formulated by
Gaspard Monge; given a ‘sand-pile’ and a ‘hole’ of the same volume, find a map
which transports the sand into the hole, which minimizes the transportation
cost.
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Monge’s problem can be expressed more rigorously as follows

Problem 1 (Monge). Given two normalized mass distributions on Rd, say P
and Q, we seek a transport map T : Rd → Rd satisfying∫

A

dQ =

∫
T−1(A)

dP for any Borel subset A ⊂ Rd (1)

which minimizes the quantity ∫
Rd

φ(x, T (x)) dP (2)

for some given cost function φ : Rd ×Rd → R

Intuitively speaking, the map T is a blueprint, instructing where the mass
at each point should be redistributed to, and condition (1) is essentially a mass
conservation condition. φ(x, y) is the transportation cost of moving mass from
the point x to y. When (1) is satisfied, we say T is a pushforward from P to Q,
denoted T#P = Q.

To modify this problem to detect change in a system, say two photos taken
at two instances in time, we represent the initial and final states of the system by
two probability distributions. These take the place of the ‘sand-pile’ and ‘hole’
in Monge’s problem. Under a suitable choice of cost function, the optimal map
between the two distributions would serve as an indicator of where change had
occurred. In this paper, we chose the distance squared norm φ(x, y) = ‖x−y‖2.
In our new framework, Monge’s problem becomes

Problem 2. Given two probability distributions on Rd, say P and Q, find the
map T : Rd → Rd such that

T = arg min
F

{∫
‖x− F (x)‖2 dP

∣∣∣∣ F#P = Q

}
[Essid et al., 2018] derives the reformulation of problem 2 into a minmax

problem, and [Essid et al., 2019] provides a natural algorithm for solving the
minmax problem and hence finding the Optimal map.

2 Brenier’s Theorem

A priori, there is no guarantee that problem 2 is well posed; such a T might
not exist. Brenier’s theorem, stated without proof, rectifies this by guaranteeing
that, given assumptions on P and Q, such a pushforward T exists and is unique.

Theorem 2.1 (Brenier’s Theorem). Let P , Q be probability distributions over
Rd, such that P and Q don’t assign any mass to sets of Hausdorff dimension
d − 1 or less. Then there exists a unique solution to problem 2 of the form
T = ∇ϕ where ϕ : Rd → R is some convex function. Furthermore, ϕ is the
only convex function (neglecting the constant term) such that ∇ϕ#P = Q.
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Proof. A proof can be found in [Villani, 2003]

The second part of Brenier’s theorem implies that the pushforward condition
admits a unique transport map T such that T is the gradient of a convex scalar
function. The first part of Brenier’s theorem then implies that such a map
must also minimize the cost and therefore be the solution to problem 2. Hence
problem 2 has the following equivalent formulation.

Problem 3. Find a convex function ϕ whose gradient satisfies the pushforward
condition

∇ϕ#P = Q (3)

3 A Minmax reformulation

In order to construct an algorithm to solve problem 3, one must search the set of
convex scalar functions for the single function which satisfies (3). This equality
constraint is impractical to enforce. Instead, [Essid et al., 2018] introduces an
indicator, the Kullback-Leibler divergence, to measure the ‘difference’ between
∇ϕ#P and Q. When the Kullback-Leibler divergence is minimized, (3) holds.
Therefore, the minimization of this quantity can be used to direct the search in
the space of convex functions.

3.1 Kullback-Leibler Divergence

Definition 3.1. For any two given probability distributions P and Q, We define
the Kullback-Leibler Divergence, denoted DKL(P‖Q) to be

DKL(P‖Q) :=

∫
ln

(
dP

dQ

)
dP

Lemma 3.1. The Kullback-Leibler Divergence DKL(P‖Q) is non-negative and
is zero if and only if P = Q.

Proof.

1. If P is not absolutely continuous with respect to Q, then DKL(P‖Q) =
+∞ > 0.

2. If P is absolutely continuous with respect to Q, then dP/dQ is integrable
with respect to Q. Therefore,

DKL(P‖Q) =

∫
ln

(
dP

dQ

)
dP

=

∫
dP

dQ
ln

(
dP

dQ

)
dQ

≥
∫
dP

dQ
dQ ln

(∫
dP

dQ
dQ

)
= 0

(4)
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by Jensen’s inequality, since x → x ln(x) is convex. Equality of equation
(4) holds if and only if dP/dQ = Const. since P and Q have total mass 1,
this is equivalent to P = Q.

It follows from this lemma that minimizing the Kullback-Leibler divergence is
equivalent to satisfying the pushforward condition. This provides an alternative
to formulation of problem 3.

Theorem 3.1. ϕ is a solution to problem 3 if and only if ϕ and satisfies

ϕ = arg min
ψ

{DKL(∇ψ#P‖Q) | ψ is convex} (5)

Proof. Suppose ϕ is the unique (up to constants) solution to problem 3. Hence
ϕ is convex and we have ∇ϕ#P = Q. Substituting into the Kullback-Leibler
divergence, we obtain

DKL(∇ϕ#P‖Q) =

∫
ln (1) dP = 0

Since DKL(P‖Q) is always non-negative, ∇ϕ indeed satisfies (5). For the other
half of the proof, we note that

0 ≤ inf
ψ
{DKL(∇ψ#P‖Q) | ψ is convex} ≤ DKL(∇ϕ#P‖Q) = 0

Thus, any convex function ξ satisfying (5) must have DKL(∇ξ#P‖Q) = 0.
Hence, by Lemma 3.1, ∇ξ#P = Q. Finally, by uniqueness of solutions to
problem 3, ξ = ϕ (up to a constant).

3.2 Variational Formulation

The theorem above provides a means to solve problem 3 in the case when P
and Q are known. However, in the problem we seek to solve, P and Q are
known only through samples. Therefore, it becomes impractical to calculate
DKL(∇ψ#P‖Q). Nevertheless, the Kullback-Leibler divergence has a varia-
tional formulation which can be written as the maximization of the difference
of two expectations, which is naturally adaptable to the sample based problem.

Theorem 3.2.

DKL(P‖Q) = 1 + max
g

{∫
g dP −

∫
eg dQ

∣∣∣∣ g Borel measurable

}
(6)

Proof.
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1. If P is not absolutely continuous with respect to Q, then there exists some
set A such that P (A) > 0 and Q(A) = 0. Consider the family of indicator
functions

kχA :=

{
1 if x ∈ A
0 if x /∈ A

where k ∈ R. It follows that

kP (A) ≤ max
g

{∫
g dP −

∫
eg dQ

∣∣∣∣ g Borel measurable

}
Taking the limit as k → +∞, we obtain

max
g

{∫
g dP −

∫
eg dQ

∣∣∣∣ g Borel measurable

}
= +∞ = DKL(P‖Q)

2. If P is not absolutely continuous with respect to Q, the function

g → g
dP

dQ
− eg

is concave in g, and is uniquely maximized at g = ln(dP/dQ). From this
we have that for every x ∈ Rd,

g(x)
dP

dQ
(x)− eg(x) ≤ dP

dQ
(x)

(
ln

(
dP

dQ
(x)

)
− 1

)
Integrating with respect to Q yields

1 +

∫
g dP −

∫
eg dQ ≤

∫
ln

(
dP

dQ

)
dP = DKL(P‖Q)

Taking the maximum over all g yields the final result.

Assuming that X ∼ P and Y ∼ Q, we can replace the integral with expec-
tations; (3.2) becomes

DKL(P‖Q) = 1 + max
g

{
E [g(X)]− E

[
eg(Y )

] ∣∣∣ g Borel measurable
}

Suppose {xj} is a sample drawn from P and {yj} is drawn from Q. Replacing
the expectations by empirical means yields the approximation

DKL(P‖Q) ≈ max
g

 1

n

∑
i

g(xi)−
1

m

∑
j

eg(yj)


This yields a clean way to estimate the value of the Kullback-Leibler diver-

gence from samples of P and Q, without knowing their underlying distributions.
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3.3 Minmax

We now construct a theoretical minmax problem equivalent to problem 3. Sup-
pose that X ∼ P and Y ∼ Q. For any map T , it is known that X ∼ P ⇒
T (X) ∼ Q (see [Villani, 2003] for proof). From Theorem 3.2 we have

DKL(∇ψ#P‖Q) = 1 + max
g

{
E[g(∇ψ(X))]− E

[
eg(Y )

] ∣∣∣ g Borel measurable
}

By applying Theorem 3.1, ϕ is a solution to problem 3 if and only if ϕ
satisfies

ϕ = arg min
ψ

{DKL(∇ψ#P‖Q) | ψ is convex}

= arg min
ψ

{
max
g

{
E[g(∇ψ(X))]− E

[
eg(Y )

] ∣∣∣ g Borel measurable
} ∣∣∣∣ ψ is convex

}
If {xj} is a sample drawn from P and {yj} is drawn from Q, replacing the

expectations with empirical means gives us

ϕ ≈ arg min
ψ

max
g

 1

n

∑
i

g(∇ψ(xi))−
1

m

∑
j

eg(yj)


 (7)

4 Algorithm

4.1 Minimax Algorithm

We now take the theoretical problem (7) and develop an algorithm to solve
it given two samples {xj} and {yj}. One naive approach to solve a minmax
problem would be to preform a ‘twisted’ gradient descent, i.e. ascent in g-space
and gradient descent in ψ-space. Parametrising ψ-space by α and g-space by β,
we can define the objective function f by

f [α, β] =
1

n

∑
i

g(∇ψ(xi;α);β)− 1

m

∑
j

eg(yj ;β) (8)

the iterative scheme would be[
αn+1

βn+1

]
=

[
αn
βn

]
−∆t ·KGn

Where

Gn :=

[
∇αf
∇βf

]
[αn,βn]

, K :=

[
Iα 0
0 −Iβ

]
(9)

Iv is the square identity matrix, with dimensions equal to the length of the
vector v. Whilst effective in some cases, this algorithm is prone to be caught in
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oscillatory solutions. To rectify this we may instead apply an implicit ‘twisted’
gradient descent. The iterative scheme would instead be[

αn+1

βn+1

]
=

[
αn
βn

]
−∆t ·KGn+1 (10)

Using a first order expansion of Gn+1 about (αn, βn), we have

Gn+1 ≈ Gn +Hn

([
αn+1

βn+1

]
−
[
αn
βn

])
Where

Hn =

[
∇ααf ∇αβf
∇αβf ∇ββf

]
[αn,βn]

(11)

Substituting this into (10), we obtain a linear problem for (αn+1, βn+1) in terms
of (αn+1, βn+1).

(I + ∆t ·KHn)

[
αn+1

βn+1

]
=

[
αn
βn

]
−∆t ·K

(
Gn −Hn

[
αn
βn

])
(12)

Solving for [αn+1, βn+1] yields an iterative scheme for an implicit twisted gra-
dient descent algorithm.

Algorithm 1. (Minmax)
Input(x, y, α0, β0)
Define: G, H, K as in (9), and (11)
G0 := G(α0, β0)
H0 := H(α0, β0)
n = 0
while ‖Gn‖ > E

v = linsolve((I + (∆t)KHn)v = (αn, βn)− (∆t)K(Gn −Hn · (αn, βn)))
αn+1 := v(1)
βn+1 := v(2)
Gn+1 := G(αn+1, βn+1)
Hn+1 := H(αn+1, βn+1)
n = n+ 1

end
Output(αn+1, βn+1)

Notice that the in limit as ∆t → +∞, (12) becomes Newton’s method. It
is possible to accelerate convergence by dynamically modifying the value of ∆t,
further details can be found in [Essid et al., 2019].

4.2 Global Algorithm

Implicit twisted gradient descent is not guaranteed to converge to the correct
solution, unless the measures P and Q are close in proximity. One way to
circumvent this problem is to break the global problem into N local optimal
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transport problems, composing them to obtain the global map. By Brenier’s
theorem, this composition will only be optimal if it is itself the gradient of a
convex scalar function which satisfies the push forward condition.

Lemma 4.1. For any measure P ,

(ϕ ◦ ψ)#P = ϕ#(ψ#P )

Proof.

(ϕ ◦ ψ)#P = P ((ϕ ◦ ψ)−1(A))

= P
(
ψ−1

(
ϕ−1 (A)

))
= (ψ#P )

(
ϕ−1 (A)

)
= ϕ# (ψ#P )

for any Borel subset A ⊂ Rd

Suppose P and Q are probability measures on Rd. By Brenier’s theo-
rem, there exists a unique convex scalar function ψ : Rd → R which satis-
fies ∇ψ#P = Q. For some N ∈ N, define Zn =

(
n
N∇ψ + (1− n

N )1
)
#
P for

0 ≤ n ≤ N , where 1 denotes the identity map. These distributions are called
McCann interpolants. For a sufficiently large N , the distribution P = Z0 will be
close enough to Z1 such that the minmax algorithm will converge to the local op-
timal map between them. For every 1 ≤ n ≤ N , let ϕn be the convex scalar func-
tion such that (∇ϕn)#Zn−1 = Zn. Denote ◦kn=1∇ϕn = ∇ϕk ◦∇ϕk−1◦· · ·◦∇ϕ1;
It follows from Lemma 4.1 that T := ◦Nn=1∇ϕn satisfies the pushforward condi-
tion. It remains to be shown that T is the gradient of a convex scalar function.

Notice that by Lemma 4.1,(
k◦

n=1
∇ϕn

)
#
Z0 = Zk =

(
k

N
T +

(
1− k

N

)
1

)
#

Z0

Hence

k◦
n=1
∇ϕn =

k

N
T +

(
1− k

N

)
1 almost everywhere, for all 1 ≤ k ≤ N (13)

It turns out that this condition is sufficient to prove that T is convex.

Lemma 4.2. Suppose ψ,ϕ : Rd → R are convex scalar functions. Define T =
∇ψ ◦ ∇ϕ. If

∇ϕ = αT + β1 for any α, β ∈ R (14)

Then, there exists a convex scalar function τ : Rd → R such that T = ∇τ

Proof. Rearranging (14) we obtain for any x ∈ Rd

T (x) =
1

α

(
∇ϕ(x)− β1(x)

)
=

1

α
∇
(
ϕ(x)− β ‖x‖

2

2

)
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We have T (x) = ∇τ(x), where τ : Rd → R is defined by
(
2ϕ(x)− β‖x‖2

)
/2α.

It remains to be shown that τ is convex. Let H(·) denote the Hessian. Since
∇τ = ∇ψ ◦ ∇ϕ, we have

H(τ)
∣∣
x

= H(ψ)
∣∣
ϕ(x)

H(ϕ)
∣∣
x

But H(·) is a symmetric matrix, so it follows that

H(ψ)
∣∣
ϕ(x)

H(ϕ)
∣∣
x

= H(ϕ)
∣∣
x
H(ψ)

∣∣
ϕ(x)

Commuting symmetric matrices share a basis of orthonormal eigenvectors (see
[Lax, 2007]). For H(ϕ) and H(ψ) we denote this basis by {vi}, with correspond-

ing eigenvalues λϕi and λψi respectively. Since ϕ and ψ are convex, H(ϕ) and

H(ψ) are positive semi-definite and therefore λϕi , λ
ψ
i ≥ 0. For any w ∈ Rd, we

have the expansion

w =

d∑
i=1

αivi

which implies

wTH(τ)w =

d∑
i=1

λϕi λ
ψ
i α

2
i v

2
i ≥ 0

Hence H(τ) is positive semi-definite, verifying that τ is convex

From (13) we obtain the interative relation

k−1◦
n=1
∇ϕn =

(
k − 1

k

)
k◦

n=1
∇ϕn +

(
N + 1− k

Nk

)
1

For all 1 < k ≤ N . Then, using Lemma 4.2 we may inductively show that
◦kn=1∇ϕn is a gradient of a convex scalar function for all 1 < k ≤ N . Hence T
is indeed the optimal solution to the transport problem.

In practice, however, in order to obtain the the McCann interpolants Zn, we
require a priori knowledge of T . To address this issue, we generate an initial T 0,
which we use to find approximate McCann interpolants Z0

n. Then, using the
minmax algorithm described above, we can compute the locally optimal maps
ϕ0
n, which we then compose to construct a better approximation

T 1 :=
N◦
n=1
∇ϕ0

n

of T . Iterating this process we obtain a sequence of transport maps T k which,
if the converge, approximate the actual solution T . We obtain the following
algorithm.
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Algorithm 2. [Theoretical Global Optimal Transport]
Input(Z0,ZN )
construct an initial T 0

k = 0
while ‖T k−1 − T k‖ > E

for 1 ≤ n < N
Zkn = ( nN T

k + (1− n
N )1)#P

ϕkn = minmax(Zn−1,Zn)
end
T k+1 = ◦Nn=1∇ϕkn
k = k + 1

end

4.3 Sample based algorithm

In the sample based algorithm, we are not afforded the luxury of knowing the
initial and final distributions exactly, rather we are given samples {xj} and {yj},
which capture their essence. For each intermediate distribution Zn, we seek to
obtain a sample which is drawn from it. Since T#P = Q, we have T (X) ∼ Q.
Hence the set ( nN T + (1− n

N )1)({xj}) is a sample drawn from Zn. We modify
the algorithm accordingly

Algorithm 3. [Sample Based Global Optimal Transport]
Input(x,y)
construct an initial T 0[
s0
]
j

= T 0([x]j)

k = 0
while k == 0 or ‖sk−1 − sk‖ > E

for 1 ≤ n ≤ N
Define [zn]j :=

[
n
N s

k + (1− n
N )x

]
j

end
for 1 ≤ n ≤ N

ϕkn = minmax(zn−1,zn)
[zn]j = ∇ϕkn(

[
zn−1

]
j
)

end[
sk+1

]
j

=
[
zN
]
j

k = k + 1
end

5 Example

We now apply algorithm 3 to solve a sample based optimal transport problem:
Consider the space R2, and let {xj} and {yj} be samples drawn from unknown
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distributions on R2 (see figure 1). Before proceeding, we must address several
ambiguities glossed over when describing the algorithm.

-4 -2 0 2 4 6 8

-4
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-1

0

1

2

3

4

Figure 1: The blue sample, with 600 points is drawn from a Gaussian distribu-
tion; the orange sample with 500 points is drawn from a Gaussian with a hole
punched through it.

5.1 Choosing T0

In algorithms 2 and 3, it is left unspecified how to generate an initial guess T0.
In the theoretical algorithm, provided that (T0)#P = Q we have (Tn)#P = Q
for all n ∈ N. On the other hand, if P and Q are unknown, it becomes unclear
how to find a suitable T0. If the samples {xj} and {yj} are of the same size, then
any one to one correspondence T0 : {xj} → {yj} would satisfy the pushforward
condition. In our example however, it is not assumed that both samples are of
the same length.

In such a case, we fabricate the initial (when k = 0) interpolating samples
{z0j } directly, in such a way as to make the transition from {xj} to {yj} is as

smooth as possible. We then define T0 to be the composition ◦Nn=1∇ϕn of all
the local optimal maps ∇ϕn from {zn−1

j } to {znj }. Even if these fabricated
samples are not McCann interpolants, in subsequent iterations (k ≥ 1) of the
algorithm, znj are, by definition, McCann interpolants. T0 is also guaranteed to
satisfy the pushforward condition T#P = Q, provided the transition from {xj}
to {yj} through {znj } is smooth enough such that the local maps converge to
the correct solution.

Given two Gaussian distributions, P = N (x̄,Σx) and Q = N (ȳ,Σy) (where
x̄, ȳ are their respective means and Σx,Σy their respective covariant matrices),
the optimal map from P to Q has an explicit form, and is given by

Fx(x) := ȳ + Σ1/2
x (Σ−1/2

x ΣyΣ−1/2
x )1/2Σ1/2

x (x− x̄)
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The optimal map from Q to P is

Fy(y) := x̄+ Σ1/2
y (Σ−1/2

y ΣxΣ−1/2
y )1/2Σ1/2

y (y − ȳ)

For each 1 ≤ n ≤ N , {znj } is defined to be a ‘blend’ of the sets { nN xj + (1 −
n
N )Fx(xj)} and { nN Fy(yj) + (1 − n

N )yj}; b nN#({xj})c and b(1 − n
N )#({xj})c

elements are chosen from each set respectively (where #(A) is the cardinality
of A). See figure 2 to see this method used on our example.
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Figure 2: 6 different initial samples {znj } obtained by the method described
above. The blue points belong to the set { nN xj + (1 − n

N )Fx(xj)} and the
orange points belong to the set { nN Fy(yj) + (1− n

N )yj}

5.2 Parametrisation of the function spaces

The minmax algorithm requires parametrisations of both ψ-space and g-space.
Given two between nearby distributions, the optimal map ∇ϕ between them
will be a small perturbation of the identity map. One can argue that ∇ϕ
therefore belongs to a low dimensional function space, which contains Gaussian
perturbations from the set of linear functions. In particular, we parametrise
ψ-space by

ψ(x;α) = xT
[
α1 α2

α2 α3

]
x+

[
α4 α5

]
x+

m−1∑
k=0

α1+3ke
−
‖x−(α2+3k,α3+3k)‖2

σ2

Where σ is a constant, which, intuitively speaking, is the resolution of the
perturbations. We chose g-space to be similar to ψ-space

g(y;β) = yT
[
β1 β2
β2 β3

]
y +

[
β4 β5

]
y + β5 +

m−1∑
k=0

β1+3ke
−
‖y−(β2+3k,β3+3k)‖2

σ2
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5.3 Choosing α0 and β0

The minmax algorithm requires initial conditions α0 and β0. Since the minmax
algorithm is used to find the the optimal map between nearby distributions,
∇ψ(x;α0) = 1 is a suitable initial condition. From (7) the corresponding β0
should be chosen such that

β0 = arg max
β

 1

n

∑
i

g(xi;β)− 1

m

∑
j

eg(yj ,β)


5.4 Result

Inputting our example into algorithm 3, we obtain the optimal map between
both samples, shown in figures 3.
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Figure 3: The blue and orange points are the initial and target samples respec-
tively. The red points are some of the McCann interpolants of final Tk returned
by algorithm 3, the rightmost distribution being the the image of {xj} under
Tk.

6 Conclusion

In the example presented, it is possible to obtain an approximation of the un-
derlying optimal map. The current iteration of the code is not robust enough to
be suitable for applications in change detection. This is in part due to the lack
of complexity of the function space. Improve this algorithm, one might want
to consider a parametrisation of the entirety of ψ-space and g-space to improve
the complexity of local maps. Furthermore one might introduce a penalty term
to enforce convexity. In this algorithm, no such penalty was needed, since N
was large enough to ensure that the interpolants were sufficiently close. This
however, came at cost of computational efficiency.
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